UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Psychiatry: Insights into depression through normative decision-making models

Huys, QJM; Dayan, P; Vogelstein, JT; (2009) Psychiatry: Insights into depression through normative decision-making models. In: Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference. (pp. 729 - 736).

Full text not available from this repository.

Abstract

Decision making lies at the very heart of many psychiatric diseases. It is also a central theoretical concern in a wide variety of fields and has undergone detailed, in-depth, analyses. We take as an example Major Depressive Disorder (MDD), applying insights from a Bayesian reinforcement learning framework. We focus on anhedonia and helplessness. Helplessness-a core element in the conceptualizations of MDD that has lead to major advances in its treatment, pharmacological and neurobiological understanding-is formalized as a simple prior over the outcome entropy of actions in uncertain environments. Anhedonia, which is an equally fundamental aspect of the disease, is related to the effective reward size. These formulations allow for the design of specific tasks to measure anhedonia and helplessness behaviorally. We show that these behavioral measures capture explicit, questionnaire-based cognitions. We also provide evidence that these tasks may allow classification of subjects into healthy and MDD groups based purely on a behavioural measure and avoiding any verbal reports.

Type:Proceedings paper
Title:Psychiatry: Insights into depression through normative decision-making models
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Life Sciences > Gatsby Computational Neuroscience Unit

Archive Staff Only: edit this record