UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Asymptotic scaling in the two-dimensional $SU(3)$ $σ$-model at correlation length $4 \times 10^5$

Mana, G; Pelissetto, A; Sokal, AD; (1996) Asymptotic scaling in the two-dimensional $SU(3)$ $σ$-model at correlation length $4 \times 10^5$. Phys.Rev.D , 54 1252 - 1255. 10.1103/PhysRevD.54.R1252.

Full text not available from this repository.

Abstract

We carry out a high-precision simulation of the two-dimensional $SU(3)$ principal chiral model at correlation lengths $\xi$ up to $\approx\! 4 \times 10^5$, using a multi-grid Monte Carlo (MGMC) algorithm. We extrapolate the finite-volume Monte Carlo data to infinite volume using finite-size-scaling theory, and we discuss carefully the systematic and statistical errors in this extrapolation. We then compare the extrapolated data to the renormalization-group predictions. For $\xi \gtapprox 10^3$ we observe good asymptotic scaling in the bare coupling; at $\xi \approx 4 \times 10^5$ the nonperturbative constant is within 2--3\% of its predicted limiting value.

Type:Article
Title:Asymptotic scaling in the two-dimensional $SU(3)$ $σ$-model at correlation length $4 \times 10^5$
DOI:10.1103/PhysRevD.54.R1252
Publisher version:http://dx.doi.org/10.1103/PhysRevD.54.R1252
Additional information:13 pages (includes 3 figures), self-unpacking uuencoded .tar.gz
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Mathematics

Archive Staff Only: edit this record