Journal of Fluid Mechanics
http://journals.cambridge.org/FLM

Journal of
. . Fluid Mechanics
Additional services for Journal of Fluid Mechanics: voLuwe

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Short-scale effects on model boundary-layer spots

R. G. A. Bowles and F. T. Smith

Journal of Fluid Mechanics / Volume 295 / July 1995, pp 395 - 407
DOI: 10.1017/S0022112095002023, Published online: 26 April 2006

Link to this article: http://journals.cambridge.org/abstract S0022112095002023

How to cite this article:
R. G. A. Bowles and F. T. Smith (1995). Short-scale effects on model boundary-layer spots.
Journal of Fluid Mechanics, 295, pp 395-407 doi:10.1017/S0022112095002023

Request Permissions : Click here

CAMBRIDGE JOURMNALS

Downloaded from http://journals.cambridge.org/FLM, IP address: 144.82.107.36 on 18 Oct 2012



J. Fluid Mech. (1995), vol. 295, pp. 395-407 395
Copyright © 1995 Cambridge University Press
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This theoretical work, on the spot in an otherwise laminar boundary layer, concerns
the initial-value problem for three-dimensional inviscid disturbances covering a wide
range of scales. The study asks whether or not comparatively short scales can
have a substantial impact on the spot spreading rate, as well as on other important
features including the spot structure. It is found that such scales act to reduce
the spread angle to approximately 11°, close to the experimental observations for
transitional /turbulent spots, as opposed to the angle of 19.47° for waves near or
behind the spot trailing edge. The scales emerge from coupling uniform shear flow
directly with the local uniform stream and then analysing large-time features. The
leading edge and trailing edge of the spot are also examined in detail, along with
other structural properties. It is concluded that nonlinearity and short-scale effects
probably combine to restrict the global spread angle as above, while viscous sublayer
bursting among other things completes the spot structure. Related work on nonlinear,
trailing-edge and leading-edge behaviours and comparisons with experiments are also
discussed.

1. Introduction

The unsteady ‘spot’ is a patch of disturbed fluid travelling in an otherwise undis-
turbed flow, such as a boundary-layer or channel fiow. The name was coined by
Emmons (1951) who was the first to investigate this phenomenon. The flow within
the spot may be laminar, transitional or turbulent. It is this last case which has
been the main focus of the numerous experimental and computational studies on
spots. The flow within turbulent spots exhibits features seen in structures within fully
turbulent flows, as shown, for example, by Glezer, Katz & Wygnanski (1989), and it
is therefore felt that an understanding of such spots may lead to greater insight into
turbulence itself. As well as furthering this ultimate aim, however, a knowledge of
spots is already used, by aerospace companies such as Rolls Royce for example, to
predict and model transition to turbulence, providing an estimate for the intermittency
factor in transitional flows. Experimentally, spots in both boundary-layer and plane
Poiseuille flows are generated by artificial means, usually by an acoustic pulse or a
spark, and the evolution of the spot is closely monitored. It is known (see Elder 1960)
that a spot may be generated very rapidly, even at subcritical Reynolds numbers, by
a sufficiently strong initial disturbance, bypassing the well-known natural routes to
transition.

The gross characteristics of the spot, ie. the ‘arrowhead’ shape and ‘overhang-
ing’ front, the ‘calm region’ behind the main body of the spot, the lateral and



396 R. G. A. Bowles and F. T. Smith

streamwise spreading rates and the speed of travel downstream are therefore well-
documented: see for example Glezer et al. (1989) and references therein. Further
intriguing features are also revealed by experiments, such as the maximum height
of the spot occurring near the centre of the plan view, and the maximum turbulent
intensities being at the peripheries of the spot rather than at the core. Wave-
packets are seen to trail the spot. The linear theoretical works of Gaster (1968) and
Doorly & Smith (1992) consider the development of a three-dimensional wave-packet
at super-critical Reynolds numbers and show the formation of a caustic that limits
the spread of such waves. The experiments of Katz, Seifert & Wygnanski (1990) with
flows at subcritical Reynolds numbers indicate that in this regime the packets are
simply ‘passive attendants’, suggesting that the spread and growth of the spot is not
due only to these wave-packets but is achieved by strongly nonlinear processes in the
spot itself.

Numerical three-dimensional unsteady simulations of transitional and turbulent
spots tend to confirm the experimental findings: see, for example, Henningson,
Lundbladh & Johnson (1993) and references therein. The generation of streamwise
‘streaks’, with reduced spanwise lengthscales, is a particularly interesting feature of
these numerical spots, which also suggest that transition begins by a rapid growth in
the normal velocity ‘lifting up’ low-speed fluid from near the wall.

The above wealth of qualitative and quantitative information about spots clearly
raises many fascinating theoretical questions. It is equally clear that the phenomena in-
volved are so complex that analytical progress can probably be made only by building
up gradually from the relatively simpler laminar and transitional cases. In comparison
with the progress made experimentally and numerically the theoretical work is as yet
in its infancy, but an overall approach is suggested by Smith, Dodia & Bowles (1994)
who consider the spot evolution as an initial-value problem, with different degrees
of amplitude dependence. There are certain assumptions necessary, concerning initial
conditions and amplitudes, but the main interest is in an increased understanding of
the large-amplitude structure, which seems to fit together. The aim is to develop a
rational model for the benefit of both fundamental understanding and the techno-
logical application described earlier, with its interest in pressure-gradient effects, spot
spreading rates, spot production rates and collisions, among other properties.

The linear work of Doorly & Smith (1992) considers both incompressible and
compressible boundary-layer flows and presents a large-time analysis. This shows
the existence of two significant regions within the spot, at distances downstream
proportional to (time)!/? and (time). A feature of concern to the present paper is
that the work of Doorly & Smith (1992) predicts the spread angle of the spot to be
sin~'(1/3)(= 19.47°). This is not in good agreement with experimental observations
of the spread angle, which give an estimate closer to 11°, a matter taken up later in
this section and in §3. The linear theory predicts that the maximum amplitudes within
the spot occur at the edges or wingtips of the spot, in agreement with experimental
results (see the second paragraph above). Nonlinearity would therefore be expected
to become significant first in these regions and this development is examined by
Smith (1992). The effects are shown to be confined to edge layers at the wingtips
and arise from an interaction between the main fluctuations and the mean-flow
correction. At increased input amplitudes the analysis points to a spreading of
nonlinearity towards the centre of the spot. Dodia, Bowles & Smith (1995) present a
study of a second edge layer astride the first which then contains the nonlinearity,
again involving the interaction between the dominant fluctuations and the mean-flow
correction. Again the effect of increased input amplitudes is to extend the region of
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FiGURE 1. The various regions of the theoretical spot at large times ¢: I, the linear trailing edge; II,
the nonlinear trailing edge; III, the edge layers; IV, the ‘calm’ region; V, the (nonlinear) centre; VI,
the front.

nonlinear effects, which then eventually covers the whole spot. The latter becomes
strongly nonlinear, the mean flow itself being significantly altered. Work on the flow
solution in this region is currently under way.

Figure 1 presents an overview of the various regions. Behind the main body
of the spot is the so-called ‘calm’ region. The flow within this region is observed
experimentally to be more stable than the undisturbed flow: the displacement thickness
of the boundary layer can be reduced in this region by a factor of just over a half
(see Katz et al. 1990). Theoretically this region fits in as the centre of the spot before
the nonlinearity floods inwards. It is discussed in Dodia et al. (1995). The front, or
leading edge, of the spot is known to protrude downstream, overhanging relatively
undisturbed fluid closer to the wall. The description of this region may be approached
analytically by using the work of Smith, Doorly & Rothmayer (1990), who show the
existence of high-vorticity regions, lying just outside the boundary layer, which move
with a speed close to that of the free stream, as do the fronts of the spots observed
experimentally.

The work presented here considers an alternative simple linear model, which,
unlike the thin-layer work of Doorly & Smith (1992), crucially allows the existence
of finite-wavelength modes. The lengths here are nondimensionalised with respect to
the boundary-layer thickness. The spot may be thought of as a dispersion of these
predominantly inviscid waves, the shorter waves generally forming the front while
the trailing edge is made up of the longer, slower waves near the wall. On taking the
long-wave limit we recover the long-wave results of Doorly & Smith (1992), while
the presence of the finite wavelengths is found to produce a predicted spread angle
remarkably close to the experimentally observed 11°. Here the spread angle is taken to
be the angle between the free-stream direction and the direction to the maximum spot
width, measured from the position of the initial disturbance. The main simplification
in this model lies in the original two-dimensional boundary-layer profile (supporting
linear or nonlinear small-amplitude disturbances), which is taken to be a simple shear
beneath a uniform streamn. This is perhaps the most obvious simple model to assume,
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for a boundary-layer flow, and it allows considerable analytical progress to be made,
giving the entire pressure field throughout the spot, cf. Doorly & Smith (1992). The
predicted internal structure here is also in encouraging agreement with experiments.
Further, the shape and structure of the leading edge, which is of particular interest,
is examined in some detail. Altogether, although the above close agreement may
be fortuitous, it is hoped that such a simple model may suggest guidelines for the
investigation of the general nonlinear initial-value problem described above, given
that in the general case, with a smooth initial profile, there may be no neutral linear
waves but there are neutral nonlinear waves which may be considered analogously.

The unsteady three-dimensional Euler system is used below, for an incompressible
boundary layer, as previous work (see for example Smith et al. 1990; Smith &
Burggraf 1985; and Kachanov, Ryzhov & Smith 1993) indicates that this system
can be the most appropriate for later or bypass stages of transition, allowing a wide
band of O(1) wavelengths, speeds and amplitudes for the initial disturbance, based on
the displacement thickness and the free-stream speed. Viscous Tollmien-Schlichting
(T-S) disturbances, by the way, are all generally smaller and slower by an order of
magnitude. The lengthscales for the development of the present disturbance in the
streamwise, normal and spanwise directions are all O(Re~'/?), i.e. the Rayleigh scale,
where Re is the global Reynolds number which is assumed to be large. Thus the
coordinates scaling is equal in all three directions, unlike the ‘thin-layer’ system of
T-S waves. The timescale, based on the free-stream speed and airfoil chord, is also
O(Re™1/?), faster than the T-S timescale.

In §2 the formulation of the model problem is presented and an integral solution
for the pressure field is obtained. This expression is analysed in §3 for large times
using the method of stationary phase. The resulting predicted position of the edge of
the spot is discussed, including the 11° spread angle. In particular the position of the
spot wingtip is examined in detail both at the trailing edge and at the leading edge,
using asymptotic analysis. At the rear, the spread angle is shown to decrease from the
long-wave 19.47° limit. The front in contrast is found to be nearly parabolic, for this
model case, with the scaled spanwise coordinate of the wingtip, z, ~ €/2/(In1/€)!/2,
where € is the scaled streamwise distance from the front and is assumed to be small.
In §4 the numerical predictions for the pressure field and general spot features are
presented and compared with experimental observations. These comparisons are
encouraging, in qualitative or quantitative terms. The results and implications of this
model problem are discussed further in §5. Whereas Smith (1992) and Dodia et al.
(1995) show that nonlinear effects on their own tend to gradually reduce the spread
angle, the present study indicates tentatively that the short-scaled content of the input
disturbance may well be responsible for an even greater part of the reduction to 11°
as found above; in reality both factors probably play significant roles in fixing the
spread angle of nonlinear spots.

2. Formulation of model problem

As discussed in §1, the governing equations are the three-dimensional unsteady
Euler equations. For the small disturbances of interest here the Euler equations may
be linearized to give

u; + Uuy +0U, = —p,, (2.1)
v, + Uvy = —p,, (2.2)
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w, + wa = —Dq, (23)

together with the equation of continuity. Here u,v, w are the nondimensional velocity
components in the streamwise, normal and spanwise directions respectively, x,y,z
are the corresponding nondimensional Cartesian coordinates, p is the nondimensional
pressure and U(y) is the background flow profile, given below. The boundary
conditions and initial conditions are tangential flow at the wall, boundedness in the
far field and a given initial pressure distribution.

We seek solutions (u,v,w, p) = e~'“(n, b, W, p), where w is the wave frequency, and
take a double Fourier transform in x,z, the transform variables being « and f, so
that, for example,

0 [v8]
ux 20 = o5 [ [ il puyesi-enduds. 4
-0 J—w

We may eliminate p from the system thereby obtained from equations (2.1)—(2.3) and
use the equation of continuity to find the effective Rayleigh equation for #:

A A alU
Byy — D (az +p*+ f]—o?—_”—w) =0, (2.5)
as expected. The boundary conditions give
p=0 at y=0, (2.6)
p—>0 as y— oo 2.7

The background profile U(y) is now defined in the present model case by

_JAy for 0<y<],
U(y)_{/l for y>1.

The constant A is to be taken as unity throughout this work, although a brief
discussion of the effects of different values for A and J, the displacement thickness,
is given later in §5. There is also a condition of continuity of pressure and vertical
velocity necessary at y = 1,

?,p continuous at y=1, (2.8)
associated with the presence of the shear discontinuity and corresponding thin sub-
layer there. In (2.8) p is given by

A i A A
p= ﬁ(ow + (0 — ay)dy), 2.9)

in terms of 9, from (2.1)-(2.3).
Equations (2.5)—(2.8) then yield the solution

~sinhay .
R A= <y<i,
U(a,ﬂ,Y)={Asi_nha m Osysl (2.10)
Ae7®0-D in y>1,

for #, together with the dispersion relation
P2 R );
w(o,f) =a 26:(1 e %), 2.11)

where & = a? + % and A is the transform of the initial vertical velocity at y = 1.
From relation (2.11) it is clear that the shorter waves travel faster, with both the
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phase speed (= w/a) and the group velocity (= dw/d0a) tending to unity as & — o0,
thus we may expect the front of the spot to consist mainly of such waves. In contrast,
the trailing edge of the spot contains the longer slower waves with small phase speed
and group velocity and indeed as & — 0 we recover from (2.11) the thin-layer limit of
Doorly & Smith (1992), ie. o = aa.

The entire pressure field may now be found by using equations (2.9) and (2.10), to
give, on inversion,

pxnn = gz [ [ Fapyeeidnap 1)
where
(oc B)(a(cu ay)coshay +asinhay) in 0<y<1,
F(o,B,y) = Q( B) (2.13)
22 ysinh&(l — e #)e 30D in y>1

Here Q = ifla)/(o‘c sinh &) is the transform of the initial pressure field at y = 0. The
analysis below concentrates on this pressure distribution.

3. Large-time analysis and the spot shape

There is particular interest in both practical and theoretical terms in the spot
response at relatively large times. The behaviour of the pressure disturbance at
large ¢t may be examined by using the method of stationary phase to analyse the
integral in equation (2.12). We use polar coordinates R and 6 in the plan view
where 0 is the angle from the free-stream direction and we consider comparatively
large distances downstream of the initial disturbance such that x = Rtcosf and
z = Rtsinf. Similarly, we put « = rcos¢ and f = rsin¢. Here a and § are O(1).
Other significant scales for x,z,« and B are discussed in §5. The phase function, from
(2.11), p(= ax/t + Bz/t — w), then becomes

w(r,¢) =rRcos(d — ¢) + 3(1 —2r —e ) cos ¢. (3.1)

We seek values for the pair (r, ¢) such that
y, =0, (3.2)
vy =0, (33)

to provide the dominant contribution at large times. In practice this was carried out
as follows. For given values of R, 6, substitution of (3.1) into (3.2) gives
Rcos(0 — ¢)

—2r0
€ =1-
cos ¢

, (3.4)

where ro(¢) is the required root for r. Using this expression for ro(¢), (3.3) becomes

alP(r05 4))
35
—d5 =0, (3:5)
which gives an equation for ¢,,
roRsin @
P(ro, o) tan o = = (3.6)

cos¢g
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The two values of ¢ satisfying (3.6), ¢1, ¢, say, were found using Newton iteration,
thus giving the two required pairs (r, ¢1), (r2, ¢2), corresponding to two waves, as in
the work of Doorly & Smith (1992). However there is a critical value for 6, 6. say,
where the roots coalesce as a double root, i.e. only one wave then gives an algebraic
contribution to the integral (2.12) at large times. For values of 0 greater than 6. no
roots exist. This critical value for 6 thus corresponds to a caustic, or the wingtip of
the spot, and occurs when both (3.4) and (3.6) hold and

P p(ro, ¢)
5t 0, (3.7
from (3.5), giving
2u(rg, do) cos® po = R%e** sin? ... (3.8)

Equations (3.4), (3.6), and (3.8) thus provide three equations for ry, ¢ and the wingtip
angle 0, at any given distance R downstream and consequently govern the overall
spot shape.

The spot shape is one of the most intriguing features of the flow solution and it is
of interest to consider its development with increasing scaled distance R downstream
of the initiation position. At small distances first, i.e. near the spot’s trailing edge as
R — 0, analysis of (3.4), (3.6), (3.8) is found to yield the following behaviour for r,
¢0 and 062

1
r0=$R+%R2+..., (3.9)
$o = tan"1(/2) + O(R?), (3.10)
0. =sin"' ({) —IR+.... (3.11)

The result (3.11) in particular shows, with increasing distance R, the decrease of the
spread angle away from the trailing edge limit of Doorly & Smith (1992). Again,
although the prediction (3.11) of a wedge-like trailing-edge shape only applies strictly
for small distances R, it nevertheless provides an estimate close to R = 1 of the
leading-edge position further downstream at which the wingtip angle 6, hits zero: see
also the next-but-one paragraph.

Second, for the majority of the spot, i.e. at general values of R, 0 < R < 1, (3.4)
and (3.6) were solved numerically, to give the predicted position of the edge of the
spot shown in figure 2. It is clear immediately that, as the downstream distance
increases, the spread angle of the spot continues to decrease, the long-wave limit of
19.47° in (3.11) holding only at the very rear of the spot. The angle to the point of
maximum spot-width is in fact much closer to the experimentally observed value of
11°. Moreover, the overall shape is in encouraging agreement, at least in qualitative
terms, with experimental observations of turbulent spots in boundary layers, as given
for example by Gad-El-Hak, Blackwelder & Riley (1981).

It seems to be implied also that the wingtip angle 6. tends to zero at the front of
the spot as R — 17, as would be expected physically. Equations (3.4), (3.6) and (3.8)
may be considered in the limit as R - 1, i.e. ¢ — 0, where ¢ = 1 — R denotes the
scaled distance from the front. The numerical results appear to show that ¢, also
tends to zero at the front and, together with order of magnitude arguments, suggest
the following expansions:

bo = po1e2L + ..., (3.12)



402 R. G. A. Bowles and F. T. Smith

FiGURE 2. The predicted pressure contours at the wall, y = 0.

fe!/?
6, = ‘L +...,

where ¢y and 0, are O(1) constants and L(e) is a relatively slowly varying function
of e to be found below. Substitution of (3.12) and (3.13) into (3.4), (3.6), and (3.8)
then yields

(3.13)

2
%e—wef —e (3.14)
after some working, and hence to leading order L(¢) is determined as
L=0,(In(1/€))"* +.... (3.15)

In consequence the local expansions for ry, ¢ and 8. are found to become

e €21n(In1/¢) el?
b = (In1/e)12  2(In1/e)32 0 ((m 1/6)3/2> ’ (3.16)
ro=4In(l/e)— lIn(ln1/€) +..., (3.17)
€ 1n(In1/e) el/?
do =€/} In1/e)'? + (in1/e)/2 +0 ((ln 1/e)1/2) . (3.18)

The predicted analytical behaviour of 6. in (3.16) is compared with the numerical
results near the front of the spot, in figure 3(a,b). In figure 3(a) the first term only
in (3.16) is included, while figure 3(b) shows the effect of including the second term.
The agreement is felt to be good, given the slow logarithmic convergence of the
local expansions in (3.16)—(3.18). The prediction (3.16) confirms that the leading-edge
shape of the spot is close to parabolic, although, to be precise, it is slightly sharper
than that because of the logarithmic contributions present in (3.16).

4. Numerical results
The complete pressure field may now be calculated as the sum of the contributions
from the two waves described in §3. Using the method of stationary phase, the integral
in (2.12) may be approximated at large times by
1
2nt

itw(ridi)
© (4.1)

i/ 4By (rii) +580ee (risi)) gla, Bi, y) ,
,-=Zl’2 P (i, G wee(rs d:) 112
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FIGUre 3. The predicted shape of the front: a comparison of the theoretical prediction (dashed)
and the numerical result (solid). In (a) the first term only in (3.16) is included, in (b) the first two
terms are used.

where

g Boy) = 29260 — oy coshay + o sinhiy), “2)
1
for the region 0 < y < 1, with a similar expression for the region y = 1. Here
o; = 1;COS ¢;, and so on.

Figure 2 includes the pressure contours thus calculated, at the wall, y = 0, at time
t = 20, for ) = e™”. Here comparisons may be made with the experimental mea-
surements of Mautner & Van Atta (1982), for example, suggesting good qualitative
agreement. Their results for the wall-pressure signature show a similar division into
successive positive and negative pressure regions in the main body of the spot, with
the maximum pressure amplitudes occurring at the edges or wingtips.

For a given distance R downstream, as the angle § decreases from its wingtip value
0., the two roots of §3 become distinct, and the phase speed of one wave decreases
while that of the other increases. Thus there are two separate though passive critical
layers. The group velocities of the two waves are the same, for a given station (x, z),
from (3.2), (3.3). Then, as 8 becomes small, ie. near the centreline of the spot, the
contribution to the pressure integral from the second root tends to zero, as there the
value of d*y(ro, ¢)/0¢* at ¢ = ¢ tends to infinity. Consequently there is again only
one contributory wave at the centreline, as in two-dimensional theory.

The normal pressure profile of the model spot is shown in figure 4, for the spanwise
location z = 0.0133 close to the centreline. This view shows that at the rear of
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FIGURE 4. Pressure contours at the spanwise location z = 0.0133, close to the centreline.
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FIGURE 5. Pressure contours for 0 < y < 2 at streamwise locations (a) x = 0.5, (b) x = 0.7, (c)
x =0.9. In (@) and (b) the pressure is relatlvely high in the centre and low at the edges. In {c¢) the
pressure is relatively high both in the centre and at the edge, and low in between.

the spot the maximum pressure amplitude lies at the wall, but as the downstream
coordinate x increases, the maximum leaves the wall and moves steadily out towards
the edge of the boundary layer as the contributory waves become ever shorter near
the front. This ‘lift-up’ is again in agreement with the experimental observations, see
for example Gad-El-Hak et al. (1981).

Figure 5 shows cross-stream sections of the model spot at streamwise distances
(@) x=0.5, (b) x=0.7, (c) x=0.9. The maximum pressure amplitude is at the wing tips
throughout, where it occurs at the single critical layer y = w/a. Within the spot, on
the other hand, the maximum pressure amplitude occurs at a value of y lying between
the two critical layers noted above, and the maximum such y-value, for a given x,
occurs along the centreline, giving the spot a central ‘bulge’. The lift-up mentioned in
the previous paragraph may also be seen by comparing figures 5(a)-5(c).

5. Further discussion

An investigation of a linear three-dimensional spot disturbance to flow in a model
two-dimensional boundary layer is presented above (§§2-4). Despite its simplifica-
tions, good agreement is seen (in §4) with experimental observations of some general
features of transitional and téirbulent spots, at least in qualitative terms. First, the
‘arrowhead’ shape is predicted, and in keeping with that, second, the theoretical spread
angle is reduced by the presence of finite-wavelength modes, which give in the current
case a prediction close to 11°. Third and fourth, the ‘lift-up’ profile and the central
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bulge are also in agreement with experimental results and, fifth, the maximum distur-
bance amplitude occurs at the wingtips both in the model and in observations. Sixth,
and more tentative, is the suggestion that the ‘calm region’ observed in experiments
may correspond to the linearly disturbed zone that lags behind the trailing edge of a
nonlinear spot (as distinct from the linear trailing edge at the origin, see Figure 1). In
fact, from the linear model, figure 2 shows little variation in the pressure anyway in
the rear portion of the model spot, while the nonlinear theory predicts that this region
remains linear, behind the main nonlinear body of the spot: see Dodia et al (1995)
and §1 for a more detailed discussion of the calm region. These are all encouraging
results and suggest tentatively that the current model may provide some guidelines
for further theoretical work on more general linear and nonlinear spot disturbances.

In particular, the analysis of the front or leading edge of the spot, presented in
§3, may be extended to other cases. For the case of a spot disturbance in a channel
flow, the dispersion relation in the limit ¢ — 17, & — oo (see Smith et al 1990)
provides a phase function y to replace that in §3. Similar analysis of the new function
gives a predicted leading edge with a slightly blunter shape than the current model
boundary-layer spot, with z = O(e!/2) as € — 0, i.e. a parabolic shape. Work on other
cases is under way, although it might be expected that the parabolic or near-parabolic
leading-edge shape is the typical outcome in general.

The model boundary-layer profile assumed in this paper consists of a uniform
shear beneath a uniform stream. The model profile may be the most obvious one to
take in a first investigation, and clearly it is consistent with triple-deck-like properties
for long waves since they depend only on the wall shear and the free-stream speed.
It would be of much interest to extend the analysis to linear and nonlinear waves
for other profiles, e.g. small linear or nonlinear disturbances to straight-line profiles,
or small nonlinear disturbances to smooth profiles, as mentioned in §1, but it is
equally interesting to consider the influences of the underlying basic pressure gradient
according to the current model. From §2 the speed of the stream is A6, where § is
the displacement thickness and A the skin friction. The three velocity components are
nondimensionalized on this speed and the three length coordinates on &, as mentioned
in §1. Thus it is possible to examine the effects of varying the displacement thickness
and the shear. If, for example, the displacement thickness is increased by an adverse
pressure gradient, with the free-stream speed remaining fixed or decreased, the skin
friction A may decrease as expected. The disturbance development lengthscale then
increases, because of the scaling on § mentioned above, and the timescale for the
disturbance (oc A7!) increases due to the decrease in A. This would seem to imply that
the spot would tend to have a larger size and perhaps last for a greater distance and
a longer time, under the influence of an adverse pressure gradient. The implication
would seem to be sensible physically, granted that viscous sublayer bursting would
also tend to be enhanced.

The large-time analysis presented in §3 considers the behaviour of the disturbance
over large lengthscales, with x,z of O(t) and with O(1) wavenumbers, «, f, covering
the majority of the spot. Near the trailing edge of the spot on the other hand the
alternative scalings x, z = 0(t!/%), o, = O(t™'/2) apply, as in Doorly & Smith (1992)
and Smith et al. (1994), yielding a region of elliptic properties. Similarly near the
front, where the coordinate x is close to ¢, corresponding to disturbances travelling
at almost the free-stream speed of unity, the short-wave developments over a much
shorter scale have still to be considered. There the initial disturbance shape could
become more important in the large-time analysis, via the function Q(x, f) in the
integrals in equation (2.12). In addition, the comparatively thin region at the spot
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wingtips, in which an Airy function acts locally to reduce the disturbance amplitude
to zero exponentially outside the spot may also play a significant role in a tiny zone
right at the leading edge.

It is shown in §4 that the maximum disturbance amplitude moves towards the edge
of the boundary layer, y = 1 in the present model, near the front of the spot: see
also ‘lift-up’ at the start of this section. The frontal region described in the previous
paragraph is thus situated near y = 1. Analysis of this region may be instructive when
considering more general spot disturbances, whether linear or nonlinear, including
an examination of the decay of the disturbance as y decreases away from y = 1.
Other issues that merit further study include the generalizations of the trailing-edge
shape prediction in (3.11) in §3, and especially the sign of the second term there,
the leading-edge shape prediction also in §3 and earlier in this section, the overall
spread angle, currently near 11°, and the interplay between nonlinear interactions
and short-scale effects. These nonlinear effects could take the form of resonant-triad
interactions of the waves discussed here, see, for example, Craik (1971).

Altogether, the present simple inviscid model appears to agree remarkably well
with experiments, as described at the beginning of this section. The importance of its
findings should not be exaggerated of course and may be fortuitous but, against that,
it could be concluded that relatively simple considerations concerning short-scale
effects as here, allied with the influence of nonlinearity in the middle of the spot
(Dodia et al. 1995), combine to control the overall spot development in practice.
Again, there seem to be few if any other linear or nonlinear studies of initial-value
problems which are not restricted to narrow-band disturbances. The current study
addresses a wide band. In particular Tollmien—Schlichting contributions (see, for
example, Ryzhov & Savenkov 1987; Smith 1986), which are narrow-band, are left
comparatively far behind the major portions of the spot, being confined near the
origin in figures 2, 4 and being irrelevant to the real spot characteristics at large
times. Similar considerations apply to other initial conditions such as those initiating
weakly nonlinear vortex—wave interactions (Smith, Brown & Brown 1993) or unsteady
critical layers (Goldstein & Hultgren 1988), which are again narrow-band in nature
and hence have little impact in the current regime or for real spots. At low amplitudes
for laminar spots there are at least three factors all tending to limit the spot spreading
rate, namely compressibility Doorly & Smith (1992), viscosity (Gaster 1975; Gaster
& Grant 1975) and short-scale inviscid effects as in the present study. At higher
amplitudes however it is felt likely that the spreading rate is controlled mostly by the
short-scale effects above combined with nonlinearity as in Smith et al. (1994), and
with compressibility if present, at least until the amplitudes are sufficiently large as
to provoke the viscous sublayer eruptions discussed in the last-named reference. The
reduction of the theoretical spread angle from 19.47° to approximately 11° is certainly
an encouraging feature.

It is worth remarking that the same 19.47° angle is found for ship wakes (Lighthill
1978) and for rotating fluids Cheng & Johnson (1982), while a corresponding inde-
pendent analysis for channel flows is given by Widnall (1984). Reduction of the angle
by short-scale effects could occur in these contexts and there may be applications of
those effects and others studied herein also in a variety of different flows.

Thanks are due to EPSRC for support for RGAB and for computational facilities,
to Dr A. J. Grass for many interesting discussions and to the referees for their
comments.
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