UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

MaLM: Machine learning middleware to tackle ontology heterogeneity

Capra, L; (2007) MaLM: Machine learning middleware to tackle ontology heterogeneity. In: Proceedings - Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2007. (pp. 449 - 454). Green open access

[img]
Preview
PDF
7345.pdf

Download (194kB)

Abstract

We envisage pervasive computing applications to be predominantly engaged in knowledge-based interactions, where services and information will be found and exchanged based on some formal knowledge representation. To enable knowledge sharing and reuse, current middle-ware make the assumption that a single, universally accepted, ontology exists with which queries and assertions are exchanged. We argue that such an assumption is unrealistic. Rather, different communities will speak different 'dialects'; in order to enable cross-community interactions, thus increasing the range of services and information available to users, on-the-fly translations are required. In this paper we introduce MaLM, a middleware for pervasive computing devices that exploits an unsupervised machine learning technique called Self-Organising Map to tackle the problem of ontology heterogeneity. At any given time, the MaLM instance running on a device operates in one of two possible modes: 'training', that is, MaLM is autonomically learning how to group together semantically closed concepts; and 'expert', that is, given in input a query or assertion expressed in a foreign dialect, MaLM identifies the concept, expressed in the device mother-tongue, that most closely represents it. © 2007 IEEE.

Type: Proceedings paper
Title: MaLM: Machine learning middleware to tackle ontology heterogeneity
Open access status: An open access version is available from UCL Discovery
DOI: 10.1109/PERCOMW.2007.64
UCL classification: UCL > School of BEAMS > Faculty of Engineering Science > Computer Science
URI: http://discovery.ucl.ac.uk/id/eprint/7345
Downloads since deposit
164Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item