UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

MaLM: Machine learning middleware to tackle ontology heterogeneity

Capra, L; (2007) MaLM: Machine learning middleware to tackle ontology heterogeneity. In: Proceedings - Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2007. (pp. 449 - 454). Green open access

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
189Kb

Abstract

We envisage pervasive computing applications to be predominantly engaged in knowledge-based interactions, where services and information will be found and exchanged based on some formal knowledge representation. To enable knowledge sharing and reuse, current middle-ware make the assumption that a single, universally accepted, ontology exists with which queries and assertions are exchanged. We argue that such an assumption is unrealistic. Rather, different communities will speak different 'dialects'; in order to enable cross-community interactions, thus increasing the range of services and information available to users, on-the-fly translations are required. In this paper we introduce MaLM, a middleware for pervasive computing devices that exploits an unsupervised machine learning technique called Self-Organising Map to tackle the problem of ontology heterogeneity. At any given time, the MaLM instance running on a device operates in one of two possible modes: 'training', that is, MaLM is autonomically learning how to group together semantically closed concepts; and 'expert', that is, given in input a query or assertion expressed in a foreign dialect, MaLM identifies the concept, expressed in the device mother-tongue, that most closely represents it. © 2007 IEEE.

Type:Proceedings paper
Title:MaLM: Machine learning middleware to tackle ontology heterogeneity
Open access status:An open access version is available from UCL Discovery
DOI:10.1109/PERCOMW.2007.64
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

View download statistics for this item

Archive Staff Only: edit this record