UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The evolution of robust development and homeostasis in artificial organisms

Basanta, D; Miodownik, M; Baum, B; (2008) The evolution of robust development and homeostasis in artificial organisms. PLoS Computational Biology , 4 (3) , Article e1000030. 10.1371/journal.pcbi.1000030. Green open access

[thumbnail of 67835.pdf]
Preview
PDF
67835.pdf

Download (322kB)

Abstract

During embryogenesis, multicellular animals are shaped via cell proliferation, cell rearrangement, and apoptosis. At the end of development, tissue architecture is then maintained through balanced rates of cell proliferation and loss. Here, we take an in silico approach to look for generic systems features of morphogenesis in multicellular animals that arise as a consequence of the evolution of development. Using artificial evolution, we evolved cellular automata-based digital organisms that have distinct embryonic and homeostatic phases of development. Although these evolved organisms use a variety of strategies to maintain their form over time, organisms of different types were all found to rapidly recover from environmental damage in the form of wounds. This regenerative response was most robust in an organism with a stratified tissue-like architecture. An evolutionary analysis revealed that evolution itself contributed to the ability of this organism to maintain its form in the face of genetic and environmental perturbation, confirming the results of previous studies. In addition, the exceptional robustness of this organism to surface injury was found to result from an upward flux of cells, driven in part by cell divisions with a stable niche at the tissue base. Given the general nature of the model, our results lead us to suggest that many of the robust systems properties observed in real organisms, including scar-free wound-healing in well-protected embryos and the layered tissue architecture of regenerating epithelial tissues, may be by-products of the evolution of morphogenesis, rather than the direct result of selection.

Type: Article
Title: The evolution of robust development and homeostasis in artificial organisms
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pcbi.1000030
Publisher version: http://dx.doi.org/10.1371/journal.pcbi.1000030
Language: English
Additional information: © 2008 Basanta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Keywords: STEM-CELLS, SCAR-FREE, DROSOPHILA, MORPHOGENESIS, DYNAMICS, REPAIR, REGULATORS, NETWORK, EMBRYOS
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Lab for Molecular Cell Bio MRC-UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/67835
Downloads since deposit
167Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item