UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

A comprehensive aerosol spray method for the rapid photocatalytic grid area analysis of semiconductor photocatalyst thin films

Kafizas, A; Mills, A; Parkin, IP; (2010) A comprehensive aerosol spray method for the rapid photocatalytic grid area analysis of semiconductor photocatalyst thin films. ANAL CHIM ACTA , 663 (1) 69 - 76. 10.1016/j.aca.2010.01.022.

Full text not available from this repository.

Abstract

Indicator inks, previously shown to be capable of rapidly assessing photocatalytic activity via a novel photo-reductive mechanism, were simply applied via an aerosol spray onto commercially available pieces of Activ (TM) self-cleaning glass. Ink layers could be applied with high evenness of spread, with as little deviation as 5% upon UV-visible spectroscopic assessment of 25 equally distributed positions over a 10 cm x 10 cm glass cut. The inks were comprised of either a resazurin (Rz) or dichloroindophenol (DCIP) redox dye with a glycerol sacrificial electron donor in an aqueous hydroxyethyl cellulose (HEC) polymer media. The photo-reduction reaction under UVA light of a single spot was monitored by UV-vis spectroscopy and digital images attained from a flat-bed scanner in tandem for both inks. The photo-reduction of Rz ink underwent a two-step kinetic process, whereby the blue redox dye was initially reduced to a pink intermediate resorufin (Rf) and subsequently reduced to a bleached form of the dye. In contrast, a simple one-step kinetic process was observed for the reduction of the light blue redox dye DCIP to its bleached intermediates. Changes in red-green-blue colour extracted from digital images of the inks were inversely proportional to the changes seen at corresponding wavelengths via UV-visible absorption spectroscopy and wholly indicative of the reaction kinetics. The photocatalytic activity areas of cuts of Activ (TM) glass, 10 cm x 10 cm in size, were assessed using both Rz and DCIP indicator inks evenly sprayed over the films: firstly using UVA lamp light to activate the underlying Activ (TM) film (1.75 mW cm(-2)) and secondly under solar conditions (2.06 +/- 0.14 mW cm(-2)). The photo-reduction reactions were monitored solely by flat-bed digital scanning. Red-green-blue values of a generated 14 x 14 grid (196 positions) that covered the entire area of each film image were extracted using a Custom-built program entitled RGB Extractor(C). A homogenous degradation over the 196 positions analysed for both Rz (Red colour deviation = 19% UVA, 8% Solar: Green colour deviation = 17% UVA, 12% Solar) and DCIP (Red colour deviation = 22% UVA, 16% Solar) inks was seen in both UVA and solar experiments, demonstrating the consistency of the self-cleaning titania layer on Activ (TM). The method presented provides a good solution for the high-throughput photocatalytic screening of a number of homogenous photocatalytically active materials simultaneously or numerous positions on a single film; both useful in assessing the homogeneity of a film or determining the best combination of reaction components to produce the optimum performance photocatalytic film. (C) 2010 Elsevier B.V. All rights reserved.

Type:Article
Title:A comprehensive aerosol spray method for the rapid photocatalytic grid area analysis of semiconductor photocatalyst thin films
DOI:10.1016/j.aca.2010.01.022
Keywords:Photocatalysis area, Thin film, Aerosol, Mapping method, Rapid, CHEMICAL-VAPOR-DEPOSITION, TITANIUM-DIOXIDE, STEARIC-ACID, PILKINGTON ACTIV(TM), TIO2, GLASS, DEGRADATION, COATINGS, DYES, CVD
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Chemistry

Archive Staff Only: edit this record