UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Development of an electron-temperature-dependent interatomic potential for molecular dynamics simulation of tungsten under electronic excitation

Khakshouri, S; Alfe, D; Duffy, DM; (2008) Development of an electron-temperature-dependent interatomic potential for molecular dynamics simulation of tungsten under electronic excitation. PHYS REV B , 78 (22) , Article 224304. 10.1103/PhysRevB.78.224304.

Full text not available from this repository.

Abstract

Irradiation of a metal by lasers or swift heavy ions causes the electrons to become excited. In the vicinity of the excitation, an electronic temperature is established within a thermalization time of 10-100 fs, as a result of electron-electron collisions. For short times, corresponding to less than 1 ps after excitation, the resulting electronic temperature may be orders of magnitude higher than the lattice temperature. During this short time, atoms in the metal experience modified interatomic forces as a result of the excited electrons. These forces can lead to ultrafast nonthermal phenomena such as melting, ablation, laser-induced phase transitions, and modified vibrational properties. We develop an electron-temperature-dependent empirical interatomic potential for tungsten that can be used to model such phenomena using classical molecular dynamics simulations. Finite-temperature density functional theory calculations at high electronic temperatures are used to parametrize the model potential.

Type:Article
Title:Development of an electron-temperature-dependent interatomic potential for molecular dynamics simulation of tungsten under electronic excitation
DOI:10.1103/PhysRevB.78.224304
Keywords:density functional theory, laser ablation, melting, molecular dynamics method, potential energy functions, tungsten, TOTAL-ENERGY CALCULATIONS, WAVE BASIS-SET, TRANSITION-METALS, LASER, SILICON, MODEL, SEMICONDUCTORS, ALUMINUM
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Earth Sciences
UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Physics and Astronomy

Archive Staff Only: edit this record