Effect of employee worktime control on health: a prospective cohort study

L Ala-Mursula, J Vahtera, J Pentti and M Kivimäki

doi:10.1136/oem.2002.005983

Updated information and services can be found at:
http://oem.bmj.com/cgi/content/full/61/3/254

These include:

References
This article cites 23 articles, 15 of which can be accessed free at:
http://oem.bmj.com/cgi/content/full/61/3/254#BIBL

2 online articles that cite this article can be accessed at:
http://oem.bmj.com/cgi/content/full/61/3/254#otherarticles

Rapid responses
You can respond to this article at:
http://oem.bmj.com/cgi/eletter-submit/61/3/254

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

Occupational Health (1298 articles)
Other Psychiatry (913 articles)

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to Occupational and Environmental Medicine go to:
http://journals.bmj.com/subscriptions/
Aims: To investigate the health effects of employee worktime control.

Methods: Prospective cohort study among 4218 permanent full time municipal employees linking questionnaire data from 1997 and 2000 with sickness absence records from 1997 and 2001. Worktime control was considered high for the highest tertile in both 1997 and 2000, low for the lowest tertile for both years, and intermediate for all other combinations. Self rated health status, psychological distress, and medically certified periods of sickness absence were used as the health outcomes. Adjustments were made for age, baseline health status, occupational status, marital status, dependent children, and behavioural health risks.

Results: In the follow up, women with a low level of worktime control had a 1.9 times (95% CI 1.4 to 2.5) higher odds ratio for poor self rated health, a 1.4 times (95% CI 1.1 to 1.8) higher odds ratio for psychological distress, and a 1.5 times (95% CI 1.3 to 1.7) higher risk of medically certified sickness absences than women with a high level of worktime control. The health effects of worktime control were particularly evident among women with families. Among men, worktime control was not associated with self rated health or distress, but it predicted sickness absences in two subgroups: those with dependent children and those with manual occupations.

Conclusions: A low level of worktime control increases the risk of future health problems. The risk is highest among women, especially those with families, and among manual workers. The results suggest that worktime control can help workers integrate their work and private lives successfully.

Although job control, intrinsic to work, has convincingly been shown to be one of the strongest psychosocial predictors of health,1 2 much less is known about the health effects of other aspects of control,3 4 for example, control over worktime—that is, autonomy with regard to worktime (worker control over the duration, position, and distribution of his/her worktime).5 Worktime control may contribute to the successful integration of work and private lives and thus reduce stress due to conflicting demands from paid work and unpaid domestic work. At the same time, worktime control may even be beneficial within the workplace, in that it enables workers to adjust their work hours to prevailing resources.

A recent meta-analysis has linked flexible scheduling, control over the beginning and end of a workday, with lower absenteeism.6 7 Low control of worktime at the occupational level (an ecological measure) has been linked with an increased risk of hospitalisation and cardiovascular disease.8 9 10 A recent cross sectional study showed an association between perceived low work time control and poor health among women, but not among men.11 The association was independent of job control, and had the same size of effect as that of job control.

The aim of this prospective study was to explore the health effects of repeatedly measured levels of worktime control. We used three outcomes of health, self rated health status and psychological distress from questionnaires, and medically certified sickness absences from employers’ registers.

METHODS
Participants and design
Data were drawn from the ongoing Finnish Ten Town Study, which is exploring the health of municipal employees in Finland.15 The study began in 1997 in eight towns (Turku, Vantaa, Oulu, Raisio, Naantali, Valkeakoski, Nokia, and Virrat), the setting of this study. The participants were the 4218 identifiable permanent full-time employees (903 men, 3315 women) who responded to two consecutive surveys, in 1997 and 2000, assessing worktime control, health, and behavioural health risks. The mean age in 1997 was 45.7 (SD 7.7) years for the men and 44.7 (SD 7.4) for women. Of the respondents 186 were managers (55% women), 1345 were professionals (79% women), 942 were associate professionals (85% women), 406 were clerks (95% women), 558 were service workers (94% women), 445 worked in elementary occupations (72% women), and 213 worked in other occupations; for 123 respondents the data on occupation were missing. The response rate was 67% in the baseline survey and 81% in the follow up. Data on sickness absences were obtained from the employers’ records for the periods 1 January 1997 to 31 December 1997 and 1 January 2001 to 31 December 2001. The study was approved by the Ethics Committee of the Finnish Institute of Occupational Health.

Worktime control
The measure of worktime control included employees’ perceived control over the beginning and end of a workday, their opportunities to take breaks and to deal with private matters during the workday, the scope for influencing the scheduling of shifts, the scheduling of paid days off and vacations, and the opportunities to take unpaid leave. The six items covered the worktime control elements contained in the regulations of municipal labour contracts. Responses to each item were given on a five point scale (1 = very little, ..., 5 = very much). The mean of the six items was used. The measure had good internal consistency, with a Cronbach’s alpha of 0.82. A more detailed description of the measure has been published elsewhere.16

The scores for worktime control in the 1997 and 2000 surveys were first divided into tertiles, according to tertiles in
1997. The levels of worktime control were then classified into
the following three categories: high worktime control (high in
both 1997 and 2000), low worktime control (low at both
times), and intermediate worktime control (all other combi-
nations of worktime control levels in 1997 and 2000).

Health

Self rated health status was assessed by an overall rating of
health on a five point scale (1 = good, 2 = fairly good,
3 = average, 4 = fairly poor, 5 = poor). The responses were
dichotomised, 1–2 indicating good health and 3–5 repre-
senting poor health. Self rated health is a widely used
concept in medical, epidemiological, and health psychol-
ogical research.16–18 In the study cohort, 304 men (34% of
the men and women) and 2537 women (29%) showed psychologi-
cal distress.

Sickness absences were measured by the frequencies of
medically certified (≥3 days) sickness absence periods in
2001. This type of measure has been shown to adequately
reflect employee health in epidemiological studies.21–22 For
each respondent, we calculated the days at work during the
year by excluding the days absent for reasons other than
sickness. These person-years represented “days at risk for
sickness absence” and were weighted in the statistical
analyses. Employers participating in the Ten Town Study
routinely record each sick leave period for every employee,
including the dates when each period started and ended.
Records were checked for inconsistencies. Overlapping and
consecutive periods were combined. According to the regu-
lations, each sick leave certificate must be forwarded for
recording. Municipal employers keep strict records of all sick
leave in order to receive statutory compensation from the
Finnish Social Insurance Institution for salary losses from
sick leaves longer than 10 days. The employees on sick leave
receive full salary from the first day. Medical certificates are
required for sick leaves longer than three days, a focus of this
study. Maternity leave and absence from work to care for
a sick child are not included in the figures. In Finland
municipal labour contracts allow employees to be absent
from work for up to three days without loss of salary to care
for acutely ill children under 10 years of age, and there are no
limitations on the annual number of such absences. Other
absences to care for a sick child are not compensated for. In
our baseline study71 the employees with dependent children
did not have any excess of medically certified sickness
absences compared with those without children at home.
Thus a false use of sickness absence when in fact looking
after a sick child appears unlikely.

Other predictors of health

Other potential predictors of health included demographic
factors (gender, age, occupational status, family charac-
teristics) and behavioural health risks in 1997, as well as
baseline health in terms of self rated health status,
psychological distress, and the occurrence of medically
certified sickness absences (yes versus no). The occupa-
tional titles, expressed as the five digit codes of Statistics Finland,
were obtained from the employers’ records, and occupational
status was classified as manual or non-manual work.23 Of
the family characteristics, we recorded marital status (married or
cohabiting versus single, divorced, or widowed) and children
under 18 years of age living at home (yes versus no). The
behavioural health risks measured were smoking status
(current smokers and non-smokers), high alcohol consump-
tion (more than 210 g of alcohol per week),24 25 sedentary
lifestyle (less than 30 minutes of fast walking per week),26
and overweight (body mass index ≥27 kg/m²).

Statistical analyses

We tested the associations of worktime control (mean scores
in 1997 and 2000) with gender and time and their interac-
tion by repeated measures analysis of variance. The baseline
differences in the worktime control scores between the study
cohort and the dropouts were studied by analysis of variance.

In studying the associations between levels of worktime
control in 1997–2000 and other predictors of health, an
analysis of variance was used for the continuous variable of
age, and χ² tests were used for the categorical variables
(gender, occupational status, marital status, and existence of
dependent children). The associations between baseline
health status and worktime control at the time of the follow
up (reversed causalities) were studied by analysis of variance.

Logistic regression models were used to analyse the
associations of worktime control categories with self rated
health and psychological distress, and Poisson regression
models were used to analyse the associations with sickness
absence rates per person years. Use of the Poisson model
implies that the between employee variance in the rates of
sick leave equals the expected rate. In our study, the
dispersion of sick leaves did not significantly deviate from
the assumptions of the Poisson models. The analyses were
performed both unadjusted and adjusted for demographics
(age, occupational status, marital status, and existence of
dependent children), behavioural health risks (smoking,
alcohol consumption, overweight, and sedentary lifestyle),
and the baseline (1997) level of each health outcome.

To study further the effects of worktime control according
to the baseline health status, the analyses were replicated for
the initially healthy subpopulations: among those with good
self rated health in the baseline questionnaire (607 men,
2320 women), no psychological distress (681 men, 2537
women), or no sickness absence in 1997 (614 men, 1991
women), as well as for their counterparts, the initially
unhealthy subpopulations. Finally, subgroup analyses were
performed according to the occupational, marital, and family
status.

All the aforementioned analyses were carried out sepa-
rately for the men and women. The interactions of gender
and of occupational, marital, or family status with worktime

www.occenvmed.com
control were tested using the corresponding cross product terms. We used the SAS 8.2 program package for all the analyses.

RESULTS

Sample attrition is illustrated in fig 1. Among the participants, women and non-manual workers were somewhat overrepresented, and the rate of sickness absence was lower in comparison with that of the eligible population (that is, all employees of the 1997 personnel still at work in 2000). Among the dropouts, irrespective of gender, the mean age and rate of absence were higher than among the participants and the baseline scores of worktime control were lower among the female dropouts. The repeated measures analyses of variance showed that the mean scores for worktime control in 1997 and 2000 were lower for the women than for the men (p = 0.001), and that there was a declining trend in worktime control over time (p < 0.001) that was stronger among the women than among the men (p < 0.001 for interaction) (table 1).

Table 2 shows the descriptive statistics by the levels of worktime control in 1997–2000. Women were underrepresented...
among those with continuously high worktime control, and in this group the women were younger than the men. Manual workers of both genders had a high level of worktime control less often than non-manual workers did. In no case was the baseline health status associated with worktime control in the follow up (data not shown).

Table 3 presents the associations between levels of worktime control in 1997–2000 and health status in the follow up. The odds ratios of the women with a low level of worktime control were twice as high for self rated poor health and 1.5 times higher for psychological distress than those of the women with a high level of worktime control. Similarly, women with a low level of worktime control had a 1.5 times higher risk of subsequent medically certified sickness absences. These unadjusted associations remained after adjustment for age, occupational status, marital status, dependent children, baseline level of each health indicator, and behavioural health risks (including smoking, alcohol consumption, overweight, and sedentary lifestyle).

Table 4 shows the associations between worktime control and prospective health by the levels of baseline health status. Among the initially healthy women, those with low worktime control had a 1.9 times higher odds ratio for poor self rated health and psychological distress in the follow up, and a 1.3 times higher risk for subsequent sickness absences than those with high worktime control. Among the initially unhealthy women, the associations of low worktime control with poor self rated health and sickness absences in the follow up were even greater. For the either initially healthy or unhealthy men, no significant associations were found between the health outcomes and worktime control.

The interaction analyses showed that the effect of worktime control on self rated health was dependent on gender (p = 0.043 for interaction in the adjusted model). An interaction with gender also appeared for psychological distress in the unadjusted model (p = 0.041), although it was non-significant when adjusted for baseline distress and other confounders. However, for the incidence of psychological distress among those not distressed at baseline, the effect of worktime control significantly depended on gender (p = 0.032). In the total sample, gender interaction with worktime control was not found for sickness absences.

The health effects of worktime control according to the occupational, family, and marital status are shown in tables 5 and 6 for the men and women, respectively. Among the men, low worktime control was not associated with self rated health or psychological distress, but it predicted sickness absence in two subgroups, with a 1.6-fold absence rate for those with children at home and a 2.6-fold rate for those with manual occupations (interaction with occupational status, p = 0.005). In the subgroups of women, low worktime control was not associated with health status after the aforementioned adjustments.

Table 4 shows the associations between worktime control and prospective health by the levels of baseline health status. Among the initially healthy women, those with low worktime control had a 1.9 times higher odds ratio for poor self rated health and psychological distress in the follow up, and a 1.3 times higher risk for subsequent sickness absences than those with high worktime control. Among the initially unhealthy women, the associations of low worktime control with poor self rated health and sickness absences in the follow up were even greater. For the either initially healthy or unhealthy men, no significant associations were found between the health outcomes and worktime control.

The interaction analyses showed that the effect of worktime control on self rated health was dependent on gender (p = 0.043 for interaction in the adjusted model). An interaction with gender also appeared for psychological distress in the unadjusted model (p = 0.041), although it was non-significant when adjusted for baseline distress and other confounders. However, for the incidence of psychological distress among those not distressed at baseline, the effect of worktime control significantly depended on gender (p = 0.032). In the total sample, gender interaction with worktime control was not found for sickness absences.

The health effects of worktime control according to the occupational, family, and marital status are shown in tables 5 and 6 for the men and women, respectively. Among the men, low worktime control was not associated with self rated health or psychological distress, but it predicted sickness absence in two subgroups, with a 1.6-fold absence rate for those with children at home and a 2.6-fold rate for those with manual occupations (interaction with occupational status, p = 0.005). In the subgroups of women, low worktime control was not associated with health status after the aforementioned adjustments.

Table 4 shows the associations between worktime control and prospective health by the levels of baseline health status. Among the initially healthy women, those with low worktime control had a 1.9 times higher odds ratio for poor self rated health and psychological distress in the follow up, and a 1.3 times higher risk for subsequent sickness absences than those with high worktime control. Among the initially unhealthy women, the associations of low worktime control with poor self rated health and sickness absences in the follow up were even greater. For the either initially healthy or unhealthy men, no significant associations were found between the health outcomes and worktime control.

The interaction analyses showed that the effect of worktime control on self rated health was dependent on gender (p = 0.043 for interaction in the adjusted model). An interaction with gender also appeared for psychological distress in the unadjusted model (p = 0.041), although it was non-significant when adjusted for baseline distress and other confounders. However, for the incidence of psychological distress among those not distressed at baseline, the effect of worktime control significantly depended on gender (p = 0.032). In the total sample, gender interaction with worktime control was not found for sickness absences.

The health effects of worktime control according to the occupational, family, and marital status are shown in tables 5 and 6 for the men and women, respectively. Among the men, low worktime control was not associated with self rated health or psychological distress, but it predicted sickness absence in two subgroups, with a 1.6-fold absence rate for those with children at home and a 2.6-fold rate for those with manual occupations (interaction with occupational status, p = 0.005). In the subgroups of women, low worktime control was not associated with health status after the aforementioned adjustments.

Table 4 shows the associations between worktime control and prospective health by the levels of baseline health status. Among the initially healthy women, those with low worktime control had a 1.9 times higher odds ratio for poor self rated health and psychological distress in the follow up, and a 1.3 times higher risk for subsequent sickness absences than those with high worktime control. Among the initially unhealthy women, the associations of low worktime control with poor self rated health and sickness absences in the follow up were even greater. For the either initially healthy or unhealthy men, no significant associations were found between the health outcomes and worktime control.

The interaction analyses showed that the effect of worktime control on self rated health was dependent on gender (p = 0.043 for interaction in the adjusted model). An interaction with gender also appeared for psychological distress in the unadjusted model (p = 0.041), although it was non-significant when adjusted for baseline distress and other confounders. However, for the incidence of psychological distress among those not distressed at baseline, the effect of worktime control significantly depended on gender (p = 0.032). In the total sample, gender interaction with worktime control was not found for sickness absences.

The health effects of worktime control according to the occupational, family, and marital status are shown in tables 5 and 6 for the men and women, respectively. Among the men, low worktime control was not associated with self rated health or psychological distress, but it predicted sickness absence in two subgroups, with a 1.6-fold absence rate for those with children at home and a 2.6-fold rate for those with manual occupations (interaction with occupational status, p = 0.005). In the subgroups of women, low worktime control was not associated with health status after the aforementioned adjustments.
predicted health problems in both the manual and non-manual occupations across all the outcomes—with the exception that psychological distress was not associated with worktime control among the female manual workers. In regard to marital status, worktime control consistently predicted health among the women with a spouse at home, but not among the single women (interaction with marital status on sickness absences, p = 0.01). In relation to family status, a low level of worktime control predicted poor health and sickness absence among both the women with and those without children at home and psychological distress among the women with children at home.

DISCUSSION

We found that low worktime control increased the risk of subsequent health problems, especially among women. The replicability of this result for three established health outcomes and for the initially healthy participants added to the plausibility of the finding. Reversed causality could not explain our results, as health status in the baseline was not associated with subsequent worktime control. Moreover, our figures may underestimate the true health effects, since a low degree of worktime control initially was associated with dropout from the study cohort.

In this study, the association between worktime control and health was most consistently found in the subgroups of married women and women with children at home (that is, in groups with many non-work responsibilities). It is noteworthy that a large body of evidence shows that combining paid work and family is associated with good health among women and that employed women with families have better health than housewives, a phenomenon referred to as the “multiple attachment” hypothesis.28 29 Our data, restricted to full time employees only, produce tangent evidence of multiple roles being related to good health, as the single women had a 25% higher age adjusted risk of

Table 3

Odds ratios (95% CI) for poor health and psychological distress and rate ratios (95% CI) of medically certified sickness absences at follow up by the levels of worktime control in 1997–2000

<table>
<thead>
<tr>
<th>Worktime control†</th>
<th>Unadjusted</th>
<th>Adjusted*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>Self rated poor health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.12 (0.78 to 1.58)</td>
<td>1.61 (1.31 to 1.97)</td>
</tr>
<tr>
<td>Low</td>
<td>1.33 (0.89 to 1.99)</td>
<td>2.01 (1.59 to 2.53)</td>
</tr>
<tr>
<td>p for interaction</td>
<td>0.111</td>
<td>0.043</td>
</tr>
<tr>
<td>Psychological distress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Intermediate</td>
<td>0.98 (0.68 to 1.41)</td>
<td>1.21 (0.98 to 1.49)</td>
</tr>
<tr>
<td>Low</td>
<td>0.88 (0.57 to 1.35)</td>
<td>1.47 (1.16 to 1.86)</td>
</tr>
<tr>
<td>p for interaction</td>
<td>0.041</td>
<td>0.114</td>
</tr>
<tr>
<td>Sickness absence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.26 (1.01 to 1.59)</td>
<td>1.38 (1.23 to 1.55)</td>
</tr>
<tr>
<td>Low</td>
<td>1.48 (1.15 to 1.90)</td>
<td>1.46 (1.29 to 1.66)</td>
</tr>
<tr>
<td>p for interaction</td>
<td>0.528</td>
<td>0.879</td>
</tr>
</tbody>
</table>

*Adjusted for demographics (age, occupational status, marital status, dependent children), behavioural risk factors (smoking, alcohol consumption, body mass index, and sedentary lifestyle), and baseline level of the health outcome in question.

†Levels of worktime control: high, highest tertile in both 1997 and 2000; low, lowest tertile in both 1997 and 2000; intermediate, all other combinations.

Table 4

Initially healthy* versus initially unhealthy respondents: adjusted† odds ratios (95% CI) for poor health and psychological distress and rate ratios (95% CI) of medically certified sickness absences at follow up by the levels of worktime control in 1997–2000

<table>
<thead>
<tr>
<th>Worktime control†</th>
<th>Initially healthy</th>
<th>Initially unhealthy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>Self rated poor health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Intermediate</td>
<td>0.95 (0.49 to 1.83)</td>
<td>1.80 (1.27 to 2.53)</td>
</tr>
<tr>
<td>Low</td>
<td>0.97 (0.51 to 1.83)</td>
<td>1.87 (1.31 to 2.68)</td>
</tr>
<tr>
<td>p for interaction</td>
<td>0.118</td>
<td>0.141</td>
</tr>
<tr>
<td>Psychological distress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.12 (0.36 to 3.48)</td>
<td>0.95 (0.53 to 1.72)</td>
</tr>
<tr>
<td>Low</td>
<td>1.27 (0.49 to 3.32)</td>
<td>1.91 (1.22 to 3.01)</td>
</tr>
<tr>
<td>p for interaction</td>
<td>0.032</td>
<td>0.821</td>
</tr>
<tr>
<td>Sickness absence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.05 (0.69 to 1.60)</td>
<td>1.11 (0.87 to 1.44)</td>
</tr>
<tr>
<td>Low</td>
<td>1.26 (0.86 to 1.86)</td>
<td>1.32 (1.06 to 1.64)</td>
</tr>
<tr>
<td>p for interaction</td>
<td>0.907</td>
<td>0.389</td>
</tr>
</tbody>
</table>

*Good self rated health or not psychologically distressed or no medically certified sickness absences in 1997.

†Adjusted for age, behavioural risk factors (smoking, alcohol consumption, body mass index, and sedentary lifestyle), occupational status, marital status, and dependent children.
The advantages of a high level of worktime control with example, managing finances, household maintenance). There is more temporal flexibility in men’s duties (for daily, often at a fixed time (for example, cooking), whereas women are responsible for a greater number of health. Women are responsible for a greater number of paid and unpaid work and its effects on health, results agree with the prior evidence on the ‘double burden’ with children at home (tables not shown). However, our worktime control control and health were replicable within a single occupational distribution. In our present study, the health due to the differences in paid work characteristics and differences in unpaid work load rather than to confounding due to the differences in paid work characteristics and occupational distribution. In our present study, the health.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Subgroup analyses among the men: health status in the follow up by the levels of worktime control in 1997–2000, adjusted*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worktime control†</td>
<td>Occupational status</td>
</tr>
<tr>
<td></td>
<td>Non-manual workers (n = 575)</td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
</tr>
<tr>
<td>Intermediate</td>
<td>0.77 (0.48 to 1.25)</td>
</tr>
<tr>
<td>Low</td>
<td>0.84 (0.47 to 1.52)</td>
</tr>
<tr>
<td>p for interaction</td>
<td>0.567</td>
</tr>
<tr>
<td>Psychological distress†</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.07 (0.68 to 1.67)</td>
</tr>
<tr>
<td>Low</td>
<td>0.73 (0.41 to 1.30)</td>
</tr>
<tr>
<td>p for interaction</td>
<td>0.215</td>
</tr>
<tr>
<td>Sickness absence†</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
</tr>
<tr>
<td>Intermediate</td>
<td>0.86 (0.65 to 1.15)</td>
</tr>
<tr>
<td>Low</td>
<td>1.10 (0.78 to 1.54)</td>
</tr>
<tr>
<td>p for interaction</td>
<td>0.005</td>
</tr>
</tbody>
</table>

*Adjusted for age, baseline level of the health outcome in question, and behavioural risk factors (smoking, alcohol consumption, body mass index, and sedentary lifestyle) in all cases, and for occupational status, marital status, and dependent children where appropriate.
†Levels of worktime control: high, highest tertile in both 1997 and 2000; low, lowest tertile in both 1997 and 2000; intermediate, all other combinations.
Odds ratio (95% CI).
Rate ratio (95% CI).

<table>
<thead>
<tr>
<th>Table 6</th>
<th>Subgroup analyses among the men: health status in the follow up by the levels of worktime control in 1997–2000, adjusted*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worktime control†</td>
<td>Occupational status</td>
</tr>
<tr>
<td></td>
<td>Non-manual workers (n = 2669)</td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.48 (1.13 to 1.94)</td>
</tr>
<tr>
<td>Low</td>
<td>1.68 (1.24 to 2.29)</td>
</tr>
<tr>
<td>p for interaction</td>
<td>0.091</td>
</tr>
<tr>
<td>Psychological distress†</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.13 (0.88 to 1.44)</td>
</tr>
<tr>
<td>Low</td>
<td>1.43 (1.08 to 1.88)</td>
</tr>
<tr>
<td>p for interaction</td>
<td>0.696</td>
</tr>
<tr>
<td>Sickness absence†</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.29 (1.13 to 1.48)</td>
</tr>
<tr>
<td>Low</td>
<td>1.36 (1.17 to 1.58)</td>
</tr>
<tr>
<td>p for interaction</td>
<td>0.060</td>
</tr>
</tbody>
</table>

*Adjusted for age, baseline level of the health outcome in question, and behavioural risk factors (smoking, alcohol consumption, body mass index, and sedentary lifestyle) in all cases, and for occupational status, marital status, and dependent children where appropriate.
†Levels of worktime control: high, highest tertile in both 1997 and 2000; low, lowest tertile in both 1997 and 2000; intermediate, all other combinations.
Odds ratio (95% CI).
Rate ratio (95% CI).
effects of worktime control were slightly stronger among the manual workers than among the non-manual workers. Manual workers may have fewer opportunities to obtain paid help to cover non-work responsibilities, and the successful handling of the work–non-work interface may rely more on their own activities. These circumstances further emphasise the importance of the optimal timing of work hours. Interestingly, the generally positive health associations of combining paid work with family have in some studies been lacking in the lower positions of the occupational hierarchy,29 which has similarly been suggested to originate from less financial resources to ease the burdens of unpaid work.

Methodologically, the strengths of this study include its prospective design in a large sample, the control for baseline health status and several potential confounders, the follow up of sample attrition, and the use of both register based and self reported health outcomes. The men were outnumbered by the women, and this difference in the numbers may have led to the lack of statistical significance in the main results among the men, although we found subgroups of men where worktime control and sickness absences were related. Nevertheless, the interaction analyses offered some support for a gender difference in the importance of this control element. For further evidence of the link between worktime control and health, studies using objective measures of worktime control (in addition to self reports) as well as intervention studies should be carried out.

With respect to work life, we observed a significant declining trend in worktime control over time. This finding was in line with observations from repeated surveys on European working conditions that show declining trends in perceived control over breaks and holidays, as well as an increasing intensity of work life.30 Worktime is in transition in Western societies. There are major trends towards work hours being differentiated, individualised, and made more flexible.31 In light of our results, these trends present both promising and threatening prospects for employee health, depending on the extent of worktime control given to employees.

For policy makers, providing employees with worktime control is an issue of organisational ergonomics, defined as the design of work processes and organisational policies compatible with the needs, abilities, and limitations of people.32 From the point of view of organisations, our results also indicate that providing employees with worktime control can save considerable costs through fewer sickness absences. The fact that three quarters of the employees in the municipal sector now studied are female further emphasises the practical implications of our results.

In conclusion, low control over worktime appears to be a health risk for female employees, especially for those with families, and for manual workers. The results underline the importance of extending occupational health research on the various dimensions of control, and also the significance of taking conditions at home into account when wellbeing at work is analysed.

ACKNOWLEDGEMENTS
This study was supported by the Academy of Finland (project no. 77560), the Finnish Work Environment Foundation (project no. 101190), The Finnish Local Government Pensions Institution, and the participating towns.

Authors’ affiliations
L Ala-Mursula, Development and Service Centre of Occupational Health, City of Oulu, Finland; Department of Public Health Science and General Practice, University of Oulu, Finland

J Vahtera, J Pentti, M Kivimäki, Finnish Institute of Occupational Health, Finland

Conflicts of interest: none

REFERENCES

www.occenvmed.com