UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Bayesian methods of analysis for cluster randomized trials with binary outcome data

Turner, RM; Omar, RZ; Thompson, SG; (2001) Bayesian methods of analysis for cluster randomized trials with binary outcome data. STATISTICS IN MEDICINE , 20 (3) 453 - 472.

Full text not available from this repository.


We explore the potential of Bayesian hierarchical modelling for the analysis of cluster randomized trials with binary outcome data, and apply the methods to a trial randomized by general practice. An approximate relationship is derived between the intracluster correlation coefficient (ICC) and the between-cluster variance used in a hierarchical logistic regression model. By constructing an informative prior for the ICC on the basis of available information, we are thus able implicitly to specify an informative prior for the between-cluster variance. The approach also provides us with a credible interval for the ICC for binary outcome data. Several approaches to constructing informative priors from empirical ICC values are described. We investigate the sensitivity of results to the prior specified and find that the estimate of intervention effect changes very little in this data set, while its interval estimate is more sensitive. The Bayesian approach allows us to assume distributions other than normality for the random effects used to model the clustering. This enables us to gain insight into the robustness of our parameter estimates to the classical normality assumption. In a model with a more complex variance structure, Bayesian methods can provide credible intervals for a difference between two variance components, in order for example to investigate whether the effect of intervention varies across clusters. We compare our results with those obtained from classical estimation, discuss the relative merits of the Bayesian framework, and conclude that the flexibility of the Bayesian approach offers some substantial advantages, although selection of prior distributions is not straightforward. Copyright (C) 2001 John Wiley & Sons, Ltd.

Type: Article
Title: Bayesian methods of analysis for cluster randomized trials with binary outcome data
UCL classification: UCL > Office of the President and Provost
UCL > School of Life and Medical Sciences
UCL > School of Life and Medical Sciences > Faculty of Population Health Sciences > MRC Clinical Trials Unit at UCL
UCL > School of BEAMS
URI: http://discovery.ucl.ac.uk/id/eprint/5426
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item