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Abstract

The effect of electron correlation corrections in the novel theory predicting the growth mode of a thin metallic film

on an insulating substrate has been studied. We discuss the influence of the substrate slab thickness on the energies of

formation for several two-dimensional phases, which, in principle, may form in Ag layer on (0 0 1) MgO substrate. We

analyze also the sensitivity of the key energy parameter––Fourier transform of the mixing potential eVV (0) to the choice
of correlation functionals. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The pattern (i.e., the microstructure and mor-
phology) of metal films deposited on oxides proves
to depend strongly on growth conditions, espe-
cially for thin layers [1–3]. The growth mode
usually falls into one of three categories: layer-
by-layer; formation of a three-dimensional (3D)

metal island; growth to a layer and then to islands
[4].
Despite much theoretical work on the adhesion

of noble and transition metals on regular MgO
substrates, using widely varying models and com-
putational methods, there is still a lack of full
understanding of interface formation and of in-
terface properties on an atomic scale. Partly this
is because there are sensitive balances between
contributions to the energy of metal on an oxide
substrate. Both of the traditional ab initio for-
malisms of Hartree-Fock (HF) and density func-
tional theory (DFT) have been used to calculate
the electronic structure explicitly. Finite-cluster
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models of the Me/MgO interfaces were studied
both by HF [7,8] and DFT [9,10] methods. Peri-
odic slab models of the same systems have mainly
used variants of DFT [11–16], based on local spin
density (LSD) and generalized gradient approxi-
mations (GGA) approaches.
In this paper, we use the results of ab initio HF–

CC calculations on the electronic structure of a
regular Ag/MgO(0 0 1) interface as a basis for
a study of an influence of electron correlation cor-
rections on energy parameters that define the mor-
phology of thin Ag films on (0 0 1) MgO surface.
We demonstrate also the influence of the thickness
of the slab on energies of competing phases in an
Ag layer. Although our general methodology was
recently briefly formulated in Ref. [5], this paper
complements the latter study with the essential
physical background. Thus, we supplement our
pilot study [5] with the analysis of the role of dif-
ferent electron correlation corrections (LSD- and
GGA-type) in the thermodynamics of interfacial
system and we analyze the sensibility of thermo-
dynamic predictions to the details of ab initio
modeling.

2. Ab initio simulation for the ordered Ag/MgO-

(0 0 1) interface

2.1. Theoretical background

In our theoretical simulation of the perfect
MgO substrate, we have considered finite-thick-
ness slabs with two-dimensional (2D) periodicity.
Since the Ag coverage of the MgO(0 0 1) surface
was varied from 1/4 metal layer (1:4 coverage) to a
monolayer (1:1 coverage), we have made a series of
calculations for the 2� 2 extended surface unit
cells of magnesia slabs. These allow us to model
four kinds of Ag structures on the Ag/MgO(0 0 1)
interface, as shown in Fig. 1. In our previous
studies, we have found and explained why silver
atoms adhere preferentially to the O-site on the
MgO(0 0 1) surface ([17] and references therein).
Indeed, such a metal/oxide interface configuration
agrees well with experiment. Thus, we consider Ag
over O-sites on MgO as appropriate for all four
structures, which are: silver monolayer (Fig. 1a),

two regular configurations of 1:2 Ag coverage
(Fig. 1b and c), and 1:4 coverage (Fig. 1d). Our
choice of the structures presented by Fig. 1b–d is
dictated by symmetry consideration (see Ref. [5]).
In constructing effective site interaction poten-
tials for thermodynamic simulations of Ag film
growth on an MgO(0 0 1) substrate, for all of these
structures we have carried out total energy opti-
mization. For the metal/oxide system, this is a 2D
optimization of the total energy EtotðaMgO; dAg–OÞ
as a function of the substrate lattice constant aMgO
and the interface distance dAg–O. For the MgO
substrate, we optimize the total energy EtotðaMgOÞ
as a function of lattice constant.
We used a periodic slab model containing either

three or five MgO(0 0 1) layers with one- and two-
side silver adhesion, respectively. As in earlier
studies on the three-layer substrate [17], we ne-
glect surface relaxation of magnesia slab, which is
known to be small [18]. For both models contain-
ing one and two Ag adlayers, the corresponding
adhesion energy per atom (Eadh) is defined ac-
cording to the universal binding energy relation
[13,17].
In our ab initio calculations we use the HF–

CC formalism as implemented in the CRYS-
TAL98 code [19], with a wide choice of various
a posteriori electron correlation corrections to the
total energy. Although a standard HF approach
usually overestimate bond length and underes-
timate the binding energy per chemical bond,
the correlation corrections certainly do improve
quality of HF calculations on the total energy
[20]. In the present paper, we have analyzed not
only Perdew–Wang (PWGGA) correlation cor-
rections [21], as earlier, but also other kinds of
correlation functionals, both GGA-type [22] and
LSD-type [23,24]. The basis sets (BS) for Mg, O,
and Ag, and some other computational details
are the same as in our previous papers in which
we calculated the atomic and electronic structure
of defective and perfect monolayers, and three-
layer Ag/MgO(0 0 1) interfaces [6,17]. We use the
same BS, but we have estimated more carefully
the BS superposition errors (BSSE) for different
configurations of Ag/MgO(0 0 1) interfaces ac-
cording to CRYSTAL98 computational scheme
[19].
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2.2. Results and discussion

The results of the latest ab initio calculations,
going beyond our recent simulations of the regular
Ag/MgO(0 0 1) interface [17] are collected in Table
1. These new data are essential for further treat-
ment of thermodynamic parameters.
The value of the lattice constant for the pure

MgO(0 0 1) substrate optimized for a 2� 2 super-
cell has been found to be smaller than in our pre-
vious calculations for the bulk unit cell. We find
this value in the range 4.09–4.15 �AA for various
correlation functionals and adhesion models, to be
compared with the previous result 4.21 �AA [17] and
with the experimental bulk value 4.205 �AA [18]. One
component of the difference comes from the sur-
face stress which like the surface tension of a liq-
uid, tends to reduce the interatomic spacing. This
effect can be seen from the systematic differences of
about 0.02 �AA between three-layer and five-layer
systems. The interface distances between silver
atoms and substrate have been optimized using the
EtotðaMgO; dAg–OÞ function for all four structures

shown in Fig. 1. As the Ag coverage increases from
1:4 to 1:1, the equilibrium dAg–O distance decreases
negligibly, by less than 3% (Table 1) and is ac-
companied by the adhesion energy increase by
0.03–0.04 eV. For all used correlation functionals,
the Ag adhesion energy lies between 0.18 and 0.26
eV per adatom, showing that we have physisorp-
tion. The adhesion energy is even smaller (a less
stable interface) for the case of the striped 1:2 Ag
coverage shown in Fig. 1c, where dAg–O is larger
than for other configurations (Table 1). Using the
LSD-type correlation functionals, the equilibrium
values of both aMgO and dAg–O are found to be
slightly larger, but the corresponding values of
Eadh smaller than those for the GGA-type func-
tionals. These trends are typical for HF–CC and
DFT methods implemented in CRYSTAL98 code
[19].
The BSSE corrections [25] were found to be

quite small (0.01–0.02 eV per adatom); they are
included in results presented in Table 1. The lateral
interactions between adjacent Ag atoms are rather
small for 1:4 and even 1:2 square coverages shown

Fig. 1. Top view of the MgO(1 0 0) surface with different superstructures of Ag atoms placed atop it. (a), (b), (c) and (d) images

correspond to Ag coverages of 1:1 (a regular monolayer), 1:2 (a square distribution), 1:2 (a striped distribution),and 1:4 (quasi-isolated

metal atoms), respectively. Directions marked as i and ii denote two trajectories of possible surface diffusion of Ag atoms.
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Table 1

Main results of the HF–CC simulation on the Ag/MgO(0 0 1) interface

Optimized

parameters of

calculations

Different a posteriori electron correlation corrections and substrate models

Perdew–Wang GGA Lee–Yang–Parr GGA Perdew–Zunger LSD Vosko–Wilk–Nusair LSD

Three-layera Five-layera Three-layera Five-layera Three-layera Five-layera Three-layera Five-layera

Pure MgO(0 0 1) surface

aMgO (�AA) 4.09 4.11 4.10 4.12 4.13 4.14 4.12 4.14

1:4 Ag coverage of MgO(0 0 1) surface (Fig. 1d)

aMgO (�AA) 4.09 4.10 4.09 4.11 4.13 4.13 4.13 4.14

dAgO (�AA) 2.58 2.59 2.59 2.60 2.63 2.64 2.64 2.65

Eadh (eV) 0.23 0.22 0.22 0.21 0.20 0.19 0.19 0.18

1:2 Ag coverage of MgO(0 0 1) surface (a square distribution, Fig. 1b)

aMgO (�AA) 4.08 4.10 4.09 4.10 4.12 4.13 4.12 4.13

dAg–O (�AA) 2.58 2.58 2.59 2.59 2.62 2.63 2.63 2.64

Eadh (eV) 0.23 0.22 0.22 0.21 0.20 0.20 0.20 0.19

1:2 Ag coverage of MgO(0 0 1) surface (a striped distribution, Fig. 1c)

aMgO (�AA) 4.08 4.09 4.09 4.10 4.12 4.12 4.12 4.13

dAg–O (�AA) 2.69 2.69 2.68 2.69 2.74 2.76 2.73 2.75

Eadh (eV) 0.12 0.11 0.12 0.11 0.10 0.10 0.10 0.09

1:1 Ag coverage of MgO(0 0 1) surface (Fig. 1a)

aMgO (�AA) 4.07 4.08 4.08 4.08 4.12 4.13 4.12 4.13

dAg–O (�AA) 2.55 2.56 2.56 2.56 2.60 2.61 2.61 2.61

Eadh (eV) 0.26 0.25 0.25 0.25 0.22 0.21 0.21 0.20

a Three and five-layer magnesia slabs are used in the models of one- and two-side silver adhesion, respectively.
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in Fig. 1b and d, respectively. This is why their
stable configurations have practically the same
values of Eadh. However, these lateral interactions
are more significant for the striped configuration
(Fig. 1c), which is clearly energetically unfavor-
able, and so has larger interfacial distances (Table
1). In the case of the two-side adhesion model, the
corresponding values of Eadh are slightly smaller,
but the equilibrium interface distances are nearly
the same as for the one-side case. This confirms
that interaction between Ag atoms positioned on
the two opposite sides of the slab is negligibly
small and that three-layer substrate slab is thick
enough for further modeling using one-side adhe-
sion model.

3. Influence of correlation corrections on the energy

parameters for Ag layer on (0 0 1) MgO

The energies of formation of 2D phases U1, U2,
and U3 corresponding to Fig. 1b–d respectively are
given in Table 2. The dispersion in the calculated
energies does not exceed 25% for any of these quite
different correlation corrections, and this consis-
tency is enough for our qualitative conclusions
about mechanisms of thin film growth mode. As
follows from Table 2 the thickness of the under-
lying magnesia slab also does not affect signifi-
cantly the values of the energies of formation of
2D phases considered in our study. The main re-
sult remains unchanged: all three energies U1, U2,
and U3 are always positive (for all investigated
models of correlation corrections). This means
that the states represented by the phases consi-
dered (Fig. 1b–d) have a higher energy than the
reference state, and thus the decomposition of Ag-E

solid solution should occur. At the same time, the
obtained data allow us to calculate the energy
parameter eVV (0) needed to describe this decompo-
sition. For details of methodology we refer to Ref.
[5]. We get eVV (0)��2.791 eV for PWGGA corre-
lation functional and three-layer magnesia slab.
For the five-layer slab with the same correlation
corrections. We get eVV ð0Þ � �2:604 eV that as
compared with aforementioned result obviously
demonstrates that three-layer slab is enough for
thermodynamic predictions––the variation of the
energy parameter is about 7%. This result proves
also that the polarization effects are small in the
case of Ag/MgO system. Table 3 illustrates the
sensitivity of eVV (0) to the choice of correlation
functionals used in the calculations with three-
layer MgO slab. It is well seen that eVV (0) does not
vary by more than 10% when different correlation
corrections are used.

4. Conclusions

To clarify the effect of the correlation correc-
tions on the relative energies for some ordered
phases, which define the phase competition in 2D
solid solution that is formed in the Ag monolayer
on (0 0 1) MgO surface we performed HF–CC

Table 2

The internal formation energies (eV) for three superstructures shown in Fig. 1b–d. The correlation functionals are the same as in Table 1

U (eV) Different a posteriori electron correlation corrections and substrate models

Perdew–Wang GGA Lee–Yang–Parr GGA Perdew–Zunger LSD Vosko–Wilk–Nusair LSD

Three-layer Five-layer Three-layer Five-layer Three-layer Five-layer Three-layer Five-layer

U1 0.552 0.518 0.566 0.474 0.433 0.408 0.426 0.409

U2 1.031 1.058 1.029 0.973 0.865 0.906 0.865 0.904

U3 0.828 0.821 0.843 0.782 0.716 0.718 0.716 0.718

Table 3

The sensitivity of the Fourier transform of the mixing potential
eVV (0) (eV) to the choice of the correlation corrections (the same
as in Table 1). Data for the three-layer slab different a posteriori

electron correlation corrections

Perdew–

Wang GGA

Lee–Yang–

Parr GGA

Perdew–

Zunger LSD

Vosko–Wilk–

Nusair LSD

�2.791 �2.828 �2.830 �2.944
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calculations with different electron correlation
functionals (LSD- and GGA-type) and compared
the obtained results. We have shown that vari-
ation of the formation energies for considered
phases does not exceed 25%, which does not affect
the qualitative conclusions. We discussed also the
sensitivity of the key energy parameter––Fourier
transform of the mixing potential eVV (0) to the
choice of correlation functionals. The effect of
correlation corrections on the value eVV (0) is less
than 10%. The sign of eVV (0) also remains the same
confirming our conclusion about the spinodal de-
composition mechanism of the formation of silver
monolayer.
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