UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

A framework for interpreting climate model outputs

Leith, NA; Chandler, RE; (2010) A framework for interpreting climate model outputs. Journal of the Royal Statistical Society, Series C (Applied Statistics) , 59 (2) 279 - 296.

Full text not available from this repository.

Abstract

Projections of future climate are often based on deterministic models of the Earth's atmosphere and oceans. However, these projections can vary widely between models, with differences becoming more pronounced at the relatively fine spatial and temporal scales that are relevant in many applications. We suggest that the resulting uncertainty can be handled in a logically coherent and interpretable way by using a hierarchical statistical model, implemented in a Bayesian framework. Model fitting using Markov chain Monte Carlo techniques is feasible but moderately time consuming; the computational efficiency can, however, be improved dramatically by substituting maximum likelihood estimates for the original data. The work was motivated by the need for future precipitation scenarios in the UK, in applications such as flood risk assessment and water resource management. We illustrate the methodology by considering the generation of multivariate time series of atmospheric variables, that can be used to drive stochastic simulations of high resolution precipitation for risk assessment purposes.

Type:Article
Title:A framework for interpreting climate model outputs
Keywords:Climate change, Climate model uncertainty, Contemporaneous auto-regressive moving average models, Downscaling, Multimodel ensembles, Sufficient statistics
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Statistical Science

Archive Staff Only: edit this record