Archambeau, C;
Vrins, F;
Verleysen, M;
(2004)
Flexible and Robust Bayesian Classification by Finite Mixture Models.
In: Verleysen, M, (ed.)
(pp. pp. 75-80).
d-side: Evere, Belgium.
Abstract
The regularized Mahalanobis distance is proposed in the framework of fi nite mixture models to avoid commonly faced numerical difficulties encountered with EM. Its principle is applied to Gaussian and Student-t mixtures, resulting in reliable density estimates, the model complexity being kept low. Besides, the regularized models are robust to various noise types. Finally, it is shown that the quality of the associated Bayesian classifi cation is near optimal on Ripley's synthetic data set.
Type: | Proceedings paper |
---|---|
Title: | Flexible and Robust Bayesian Classification by Finite Mixture Models |
ISBN-13: | 9782930307046 |
Publisher version: | http://www.dice.ucl.ac.be/Proceedings/esann/esannp... |
UCL classification: | UCL > School of BEAMS UCL > School of BEAMS > Faculty of Maths and Physical Sciences |
URI: | http://discovery.ucl.ac.uk/id/eprint/51502 |
Archive Staff Only
![]() |
View Item |