
A Framework for Characterization and Analysis of
Software System Scalability

Leticia Duboc
Dept. of Computer Science
University College London

WC1E 6BT
United Kingdom

l.duboc@cs.ucl.ac.uk

David S. Rosenblum
Dept. of Computer Science
University College London

WC1E 6BT
United Kingdom

d.rosenblum@cs.ucl.ac.uk

Tony Wicks
Fortent Ltd

80-110 New Oxford Street
WC1A 1HB

United Kingdom
t.wicks@fortent.com

ABSTRACT
The term scalability appears frequently in computing liter-
ature, but it is a term that is poorly defined and poorly
understood. The lack of a clear, consistent and systematic
treatment of scalability makes it difficult to evaluate claims
of scalability and to compare claims from different sources.
This paper presents a framework for precisely characteriz-
ing and analyzing the scalability of a software system. The
framework treats scalability as a multi-criteria optimization
problem and captures the dependency relationships that un-
derlie typical notions of scalability. The paper presents the
results of a case study in which the framework and analysis
method were applied to a real-world system, demonstrating
that it is possible to develop a precise, systematic charac-
terization of scalability and to use the characterization to
compare the scalability of alternative system designs.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—design studies, measurement techniques, modeling
techniques, performance attributes; D.2.8 [Software Engi-
neering]: Metrics—product metrics; D.2.11 [Software En-
gineering]: Software Architectures

General Terms
Design, Economics, Measurement, Performance

1. INTRODUCTION

“I examined aspects of scalability, but did not find
a useful, rigorous definition of it. Without such a
definition, I assert that calling a system ‘scalable’
is about as useful as calling it ‘modern’. I encour-
age the technical community to either rigorously
define scalability or stop using it to describe sys-
tems.” —Mark D. Hill, What is Scalability? [15]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

As this quotation suggests, scalability is a term that appears
frequently in computing literature, but it is a term that is
poorly defined and poorly understood. It is an important
attribute of computer systems that is frequently asserted but
rarely validated in any meaningful, systematic way. Many
papers employ phrases such as “X is a scalable system” or “Y
is not a scalable approach” in order to convey some intuition
about the system or approach at hand, but such phrases
leave little more than the vague and ill-formed impression
that “X is good” or “Y is bad”.

There have been attempts at providing better definitions
of the term in the years since the above quotation appeared [13,
25, 7, 8]. Although the quotation is 17 years old, it still
seems as valid today as when Hill first stated it. However,
the need for a rigorous treatment of scalability arguably has
become even more critical because computing technology
seems to be approaching fundamental physical limits [31].
Consequently, scalability of software systems will become an
increasingly important concern, as developers no longer will
be able to rely on exponential improvements in computer
technologies to rescue them from poor design decisions.

The first obstacle to addressing this concern is the lack of
a consistent and systematic treatment of scalability, which
makes it difficult to evaluate claims of scalability, to compare
claims from different sources, and to approach the problem
of scalability analysis in a uniform manner across different
system designs and application domains. Indeed, there is
little consensus as to what the term actually means, giv-
ing rise to a range of competing, and at times inconsistent
views of what it means for a system to be scalable. Addi-
tionally scalability is, in general, a highly complex attribute
of systems requiring sophisticated analysis techniques.

This paper presents a general framework for characteriz-
ing and analyzing the scalability of a software system. The
framework attempts to resolve the intuitions, ambiguities
and inconsistencies underlying the use of the term in com-
puting. It precisely captures the dependency relationships
that underlie typical notions of scalability and describes nec-
essary steps for scalability analysis. The framework is de-
signed to be instantiated for particular scalability properties
of interest and can accommodate both the analysis of mea-
surements of implemented systems and predictions of scal-
ability from formal system models. The analysis approach
presented in this paper treats scalability as a multi-criteria
optimization problem and uses precepts of microeconomics
to support the analysis.

The paper is organized as follows: Section 2 discusses the
different contexts and understandings of the term scalabil-
ity found in the literature. Section 3 presents our frame-
work and an analysis method based on analytical tools from
multi-criteria optimization. Section 4 presents results from
a case study in which we applied the framework and analy-
sis method to a real-world system, demonstrating that it is
possible to develop a precise, systematic characterization of
scalability and to use the characterization to compare the
scalability of alternative system designs. Section 5 reviews
the current state-of-the-art of scalability research. Section 6
concludes the paper and discusses future work.

2. BACKGROUND
Scalability has been discussed in many domains, from par-

allel computing [23] to software processes [24] to require-
ments prioritization [2] . A fairly typical illustration of the
way the term is used in computing literature is provided by
the specification of SAP, a well known protocol studied in
networking [14]. The roughly 5500-word document contains
exactly three occurrences of the word “scalability”. The first
occurrence is in the abstract of the document:

This document describes version 2 of the mul-
ticast session directory announcement protocol,
Session Announcement Protocol (SAP), and the
related issues affecting security and scalability that
should be taken into account by implementors. [14]

The second occurrence is in a paragraph in the middle of
the document; here is the complete paragraph:

A SAP announcer periodically multicasts an an-
nouncement packet to a well known multicast ad-
dress and port. The announcement is multicast
with the same scope as the session it is announc-
ing, ensuring that the recipients of the announce-
ment are within the scope of the session the an-
nouncement describes (bandwidth and other such
constraints permitting). This is also important
for the scalability of the protocol, as it keeps local
session announcements local. [14]

The third occurrence is within a heading entitled “Scalabil-
ity and Caching” for a section containing a free-form discus-
sion of desiderata that neither uses the term nor precisely
defines its intended meaning.

The authors of this document are extremely talented net-
work protocol designers, and thus their claims about scala-
bility arguably can be taken on trust. But what exactly are
their claims? What is it whose scalability is being claimed?
Is it the whole protocol? The caching strategy of the pro-
tocol? What system property should be measured to eval-
uate its scalability? Is it message delay? Message through-
put? What is it whose scaling is considered important? Is it
something in the design of the protocol? Something in the
execution environment of the protocol?

Like the above example, numerous are the cases in the
computing literature in which scalability is mentioned in
passing in this fashion or simply claimed outright but never
fully defined or justified. To overcome this problem, a few
authors have attempted to define rules of thumb with vary-
ing degrees of rigor:

Scalability means not just the ability to operate,
but to operate efficiently and with adequate qual-
ity of service, over the given range of configura-
tions. [17]

Terms such as “efficient”and “adequate” are too subjec-
tive to be of use. Somewhat better is the following:

An architecture is scalable . . . if it has a . . . lin-
ear (or sub-linear) increase in physical resource
usage as capacity increases . . . [8]

Looking for an increase at most linear in resource usage as
demands on the system increase may seem like a reasonable
rule of thumb at first blush, but it is easy to think of excep-
tions to this rule. For instance quicksort, a backbone algo-
rithm of many information processing systems, has super-
linear time complexity of O(n log n) in the average case.

Contributing further to the challenges of terminology and
uniformity, scalability concerns have been mentioned in the
context of specific software qualities:

“Scalability is the ability of a system to con-
tinue to meet its response time or throughput ob-
jectives as the demand for the software functions
increases.” [30]

“However, a RAID5 system still has problems
with its scalability . . . the MTTF of RAID5 is
inversely proportional to the square of the number
of HDDs.” [38]

“The limited scalability of existing multicast
simulation methods is primarily due to the large
amount of state maintained by the simulators,
which is often on a high order of the input size. . .
This state requires a proportional amount of mem-
ory in the simulator.” [37]
“The table above gives cost-equivalent key sizes

. . . The time to break is computed assuming that
Wiener’s machine can break a 56-bit DES key in
100 seconds, then scaling accordingly. The ‘Ma-
chines’ column shows how many NFS sieve ma-
chines can be purchased for $10 million. . .” [29]

The use of the term scalability in the context of perfor-
mance, as in the first quote, is the most commonly found
context. However, performance is just one of many possible
indicators of scalability. The second quote, for example, uses
mean-time-to-failure to estimate the system availability as
the number of hard disk drives scales. The third one refers
to the amount of memory used by a simulation system as
a function of its input size. Note that the fourth quotation
points to a table that indicates the time required to break
encryption keys using a varied number of NFS sieve ma-
chines. In this case, the performance metric time serves as
a proxy for security. Therefore, scalability is also analyzed
with respect to other system qualities, such as reliability,
availability, resource usage, dependability and security.

What the cited quotations have in common is a sense that
a system needs to tolerate variation or scaling in some char-
acteristic affecting its execution. For this reason, we advo-
cate that any system analysis conducted with respect to a
variation over a range of environmental or design qualities
is a scalability analysis. Furthermore, it is apparent that
there is no single, universal notion of scalability, but rather
its characterization is highly domain- and system-specific.

Figure 1: The scalability Framework.

Thus, determining the critical scaling characteristics, the
critical execution characteristics that must be measured in
order to judge scalability, and what constitutes sufficient
“tolerance”, are all things that system stakeholders ulti-
mately must decide in the context of system requirements,
since they will know best what kinds of demands will be
placed on a system and which system characteristics are
most critical to maintain as demands change.

Even when developers claim to have considered scalabil-
ity, they have often catered only for the boundary cases of
environmental and design characteristics. However, bound-
ary cases will often change. Furthermore, the same system
may be deployed at different clients, each one with its own
limits. Finally, boundary cases are no basis for understand-
ing the system behavior on other points of the scaling range.
Analyzing scalability requires, instead, a clear and complete
picture of the operational impact that the variation of en-
vironmental and design characteristics will have on the sys-
tem. For this reason we state that scalability analysis should
unveil the relationship between the operational characteris-
tics of the system and the full range of its environmental and
design characteristics—in an explicit and continuous form.
Such understanding is useful for guiding design decisions
that are more likely to support evolving requirements and
multiple deployments, objectively stating or judging scala-
bility claims and comparing claims from different sources.

Based on our extensive reading of the literature and on our
own understanding of scalability, we next define a framework
that gives stakeholders a systematic way of describing and
analyzing scalability characteristics of software systems.

3. THE SCALABILITY FRAMEWORK
We define scalability as a quality of software systems char-

acterized by the causal impact that scaling aspects of the sys-
tem environment and design have on certain measured sys-
tem qualities as these aspects are varied over expected opera-
tional ranges. If the system can accommodate this variation
in a way that is acceptable to the stakeholder, then it is a
scalable system. More precisely, we define scalability anal-
ysis as a form of experimental design that is used to reveal
the causal relationship underlying the notion of scalability in
terms of certain factors and certain dependent variables [28].
Figure 1 depicts the framework we have designed to reveal
this relationship.

3.1 Scalability Variables
Factors represent characteristics of the application domain

and the machine that will affect the system behavior, such
as volume of input data, rate at which work arrives at the
system, number of concurrent system users, maximum cache
size, maximum thread pool size, number of nodes in a server
cluster, algorithm selection and cost. These characteristics
can be classified as scaling and non-scaling. The former
represent characteristics that can potentially scale in a scal-
ability analysis, whether within or between executions of the
system. The later are characteristics that are either fixed on
the scalability analysis or vary in a nominal scale.

The subset of the factors that can be manipulated for
the scalability analysis are called independent variables. We
refer to the scaling characteristics belonging to the inde-
pendent variables as scaling dimensions. Scaling dimensions
represent the scaling aspects of both the application domain
and the machine, such as the number of concurrent users or
available nodes in a cluster. We refer to the complement
set as non-scaling variables, which are characteristics of the
application domain or machine that are either set to fixed
levels or varied in a nominal scale in an attempt to enable
the system to deal with the scaling dimensions. They could
be, for example, the selection of a sorting algorithm or the
RAM of the machine. Nuisance variables are characteris-
tics of the application domain and machine that cannot be
manipulated for the scalability experiment, such as the pro-
cessor speed if the infrastructure is already decided and can-
not be changed. A particular set of values selected for the
machine design variables is called a machine configuration.

The dependent variables represent aspects of the system
behavior that are affected by changes in the independent
variables. They typically correspond to software metrics re-
lated to performance, cost, maintenance, reliability, security
and operational constraints. Examples are peak and average
values of throughput, storage consumption, operating costs
and failures per unit of time.

While the dependent variables typically represent metrics
of traditional system characteristics such as performance,
resource usage, reliability and so on, it is the analysis of the
dependent variables in the presence of variation to the scal-
ing dimensions that turns an ordinary quality analysis into
a scalability analysis. And thus it is vague to refer simply to
“the scalability of a system”; instead one must refer to “the
scalability with respect to throughput”, or “the scalability
with respect to latency and memory consumption”.

Once the factors and the dependent variables influenc-
ing the system scalability have been identified, developers
should define an objective and quantifiable way to measure
the dependent variables against the scaling dimensions. In
this way, the relationship between the operational character-
istics of the system and the full range of it scaling dimensions
can be unveiled in an explicitly and continuous form, charac-
terizing the system’s scalability. The raw data values for the
variables can be empirically collected or estimated through
models, and statistical techniques can be used to fit the
curves that characterize this relationship. Section 3.2 dis-
cusses an analysis that treats scalability as a multi-criteria
optimization problem.

3.1.1 Selecting the Variables for Analysis
The selection of independent and dependent variables will

be unique to the scalability questions and system at hand.

Examples of scalability questions are: (1) For a given ma-
chine configuration, how do the dependent variables behave
or degrade as the variables representing the scaling dimen-
sions increase? (2) How do the dependent variables behave
when one accounts for the probability distribution of the
scaling dimensions? (3) Given two or more candidate ma-
chine configurations, which one produces the most favorable
scalability with respect to the dependent variables?1 (4)
Given two or more candidate machine configurations, what
are the “crossing points”, that is, the points where one con-
figuration becomes more favorable than another? (5) Given
some analyzed behavior of dependent variables over ana-
lyzed ranges of scaling dimensions, how are the dependent
variables expected to behave if the dimensions are extrapo-
lated beyond the bounds between which they were analyzed?

Once the variables of interest have been identified, the
stakeholder must establish bounds defining their expected
range of values. The bounds will reflect expected varia-
tion and growth in the application domain, technical and
economic feasibility in the machine design, and acceptable
bounds on required system qualities. Note that the machine
may be designed to cope with variation in a scaling dimen-
sion by dynamically varying some quality of the design, such
as the size of a thread pool. However, such dynamic varia-
tion can be performed only within static limits embodied in
the machine, and it is these static limits that are the bounds
for the independent variables representing the machine.

3.1.2 Examples
As demonstrated in this section, our framework is expres-

sive enough to unify different notions of scalability that have
appeared in the literature. We argue that by recasting a
scalability concern according to the framework, it is easier
the express and justify scalability claims2.

1. Google search engine: The Google architecture is a
large cluster of commodity processors over which the load
of search queries is distributed [3].

Scaling dimensions:
Number of queries per second, number of machines in
the cluster

Non-scaling variables:
Available bandwidth, network round-trip time

Dependent variables:
Response time for a query, bandwidth usage, I/O
devices usage

Claim: Google is scalable with respect to response rate
because it is able to maintain a sub one-second response
time as the number of queries per second scale, by varying
the number of commodities machines in the cluster.

2. Distributed systems: Jogalekar and Woodside address
the question of a scalability measure for distributed hetero-
geneous service systems [18]. One of the scalability concerns
discussed in the paper investigates whether the extra invest-
ment in maintaining and administering multiple copies of
the connection manager or database can be justified against
the increase of the “power” metric (ratio between through-
put and response time).

1We will shortly describe ways of systematically determining
when an analyzed behavior is “favorable”.
2We only exemplify the chosen set of variables and state a
simplified scalability claim, as the information we used is
limited to what has been published.

Scaling dimensions:
Number of active clients, Number of replicated data-
bases, number of connection managers, CPU speed

Dependent variables:
Power, cost in dollars

Claim: The system is scalable from one configuration to
another if the power per invested dollar can be improved (or
maintained) by evolving the system configuration (number
of databases and connection managers).

3. Parallel algorithms: Kumar and Rao have developed
a scalability metric which relates the problem size to the
number of processors required for an increase in speedup in
proportion to the number of processors used [27].

Scaling dimensions:
Problem size, Number of processor units

Non-scaling variables:
Work distribution scheme, Presence/absence of shared
memory, Diameter of the network, Relative speed of
the communication network

Dependent variables:
Efficiency, speedup

Claim: A parallel algorithm can be claimed scalable if ef-
ficiency can be maintained between 0 and 1 for an increasing
number of processor units, provided that the problem size is
also increased.

4. Commercial software: Masticola and Bondi discuss
a large-scale commercial server-based software product [26].
By migrating the system from C# to Java, developers hoped
to increase the number of users supported by the system.

Scaling dimensions:
Number of users, number of collaborating servers

Non-scaling variables:
Server design (C# vs. Java)

Dependent variables:
Processors usage, bandwidth usage, I/O devices usage

Claim: The design is scalable from C# to Java if it can
increase (1) the number of users supported on each “stan-
dard server” by an one order of magnitude and (2) the total
number of users through use of collaborating servers, while
maintaining active resource usage.

3.2 Scalability Analysis
In developing our scalability framework and working with

the case study system described in Section 4, it quickly be-
came apparent that scalability can be treated quite naturally
as a multi-criteria optimization problem in which several,
possibly conflicting quantitative criteria are to be optimized
simultaneously. In our case, the dependent variables quan-
tify the criteria to be optimized, and the tradeoffs among
the dependent variables result in different choices of ma-
chine configuration. The stakeholder’s scalability goals in
respect to different measurable characteristics of the system
are quantified by preference functions over the value of each
dependent variable. The developer can then use these pref-
erence values to measure the “satisfaction level” of the stake-
holder with respect to individual quality goals. As a measure
of the overall satisfaction with the system, we use a utility
function that combines the values of the different dependent
variables. By plotting preferences and utility values against
the scaling dimensions, it is possible to understand trends

between the aspects of the system environment/design and
the operational characteristics of the system, which can be
used to characterize the system’s scalability.

3.2.1 Preferences and Pareto Optimality
In many multi-criteria optimization problems, an solution

that maximizes all objectives may not exist. For instance,
it may be possible to improve the throughput at the cost of
memory consumption due to increased buffer size, or to re-
duce memory consumption at the cost of decreased through-
put. This kind of situation is called Pareto optimal [33].

In a Pareto optimal situation it is not possible to improve
any one objective without compromising another. More for-
mally, let X = {x1, . . . , xk} be a set of possible outcomes,
each representing a set of values for i competing objectives
(to which the dependent variables of our framework corre-
spond). Let fj : X → R be functions quantifying the pref-
erence for objective j in an outcome in X, with 1 ≤ j ≤ k.
The preference functions must be defined in such a way that
the values representing the outcomes for a particular objec-
tive are mapped to a range of values in which a greater
value equates with greater preference. For instance, the
identity function can be used as a preference function for
a quality such as average throughput, since higher through-
put is typically preferred to lower throughput. However, for
a quality such as memory consumption, lower consumption
is preferred to higher consumption, and so the preference
could be computed as the reciprocal of the value of memory
consumption. In general, any arbitrarily complex function
mapping outcomes to real numbers can be used to capture
one’s full understanding of the nature of the preference for a
particular objective in the set of outcomes.Then, X is Pareto
optimal if and only if there exists no y in X satisfying the fol-
lowing two conditions: (1) for all xm #= y, fj0 (y) > fj0(xm)
for some objective j0, and (2) for all xm #= y, fj(y) ≥ fj(xm)
for all objectives j other than j0. In other words, there is
no one outcome y that maximizes all preferences.

Typically the Pareto optimum will be a frontier of points
whose shape indicates the trade-off between objectives. In
our framework, each point represents a single system be-
havior produced by the execution of a single machine con-
figuration, with all executions using the same values for the
environment variables. Dependent variables define the axes
of the plot, with each behavior represented as a point accord-
ing to the values it produces for the dependent variables.

To illustrate these ideas, consider a hypothetical example
in which we are measuring the dependent variables average
response time and average disk usage against the scaling di-
mension average number of simultaneous users. Figure 2.a
illustrates hypothetical alternative behavioral outcomes for
these characteristics produced by five hypothetical machine
configurations for a given value of the scaling dimension.
Given that it is reasonable to try to minimize the value
of both characteristics, we define the following preference
functions over the set of outcomes: average available disk for
disk usage and average throughput for average response time.
The outcomes produced by Configurations A, B and C are
Pareto optimal and thus define the Pareto frontier depicted
in figure 2.a. In particular, none of these three configura-
tions is universally preferable to the other two, since none
of them maximizes both preferences. However, Configura-
tions D and E are inferior in both preferences to A, B and C
and thus can be rejected from further consideration.

Figure 2: Comparing Configurations.

3.2.2 Utility Functions
The choice between alternative outcomes in a Pareto fron-

tier is not straightforward. To resolve the tradeoffs inherent
in a Pareto optimal situation, we may use a utility func-
tion to transform a vector of preference values into a single
scalar value. A commonly used model of utility is objec-
tive weighting, in which the utility function U(X) is a linear
combination of the preference values fj(X), each preference
value weighted by a corresponding weighting factor λj [11].
In particular, U(X) = λ1f1(X)+. . .+λkfk(X). The weights
represent the extent to which an increase of one quality will
be accepted as the others decrease. The choice of weights
must reflect the goals of the stakeholders, who must decide
how they want to prioritize particular system qualities. Each
combination of weights defines a different utility function,
and the chosen weights reflect a set of goals defined by the
stakeholder. Systematic selection of appropriate functions
based on requirements goals is subject of future research.

When assigning weights to disparate system qualities such
as disk consumption and throughput, there is a danger of
producing an ill-defined utility function due to wide vari-
ation in the range of possible values for each preference.
Therefore, the preference values fj(X) should first be nor-
malized to a common range before being used in a utility
function. For instance, we may define a function f̂j(X) for
each objective j that normalizes the preference values fj(X)
to a value between 0 and 1:

f̂j(X) =
fj(X) − fj,min

fj,max − fj,min
(1)

where fj,min and fj,max are, respectively, the lowest and high-
est possible preference values for objective j. If the lowest
and highest possible values cannot be established in a mean-
ingful way, then the lowest and highest values observed in
all outcomes in X can be used.

Finally, the comparison between configurations is dealt
with by plotting the utility of their outcomes against each
analyzed value of the scaling dimensions. Figure 2.b plots
utility curves for the three hypothetical Pareto-optimal con-
figurations of Figure 2.a against the average number of si-
multaneous users. The configuration that maximizes utility
for the expected range of the scaling dimensions is the one
that should be selected. In this example, Configuration C
quickly achieves maximum utility at around 30,000 users.

3.3 Steps for Scalability Analysis
A scalability analysis may be used with different goals,

such as developing a scalable system, objectively judging

scalability claims or comparing claims from different sources.
Here we present a summary of the steps we propose for the
analysis in the context of software development: (1) De-
fine the system’s scalability goals in terms of the scaling
aspects of the system environment/design and its desired
system qualities. (2) Select controllable and quantifiable
variables to represent the characteristics of the system envi-
ronment/design and the system qualities that are likely to
impact the system’s scalability. (3) Identify domain, techno-
logical and economical ranges for the scaling dimensions and
roughly estimate their effect on the system qualities of inter-
est. (4) Define preferences and utility functions to measure
the dependent variables against the scaling dimensions, de-
sign variables and constraints. (5) Clearly express the objec-
tive of the scalability analysis in terms of the chose variables
and functions so that its results can be unambiguously com-
municated to stakeholders. (6) Design and implement the
system taking into consideration the scalability goals and
progressively collecting metrics to estimate the preference
and utility values for the full range of scaling dimensions.
(7) Draw clear and precise conclusions about the scalability
of the system with respect to the stakeholder’s goals.

4. CASE STUDY
Intelligent Enterprise Framework (IEF) is a system that

handles large volumes of data, builds adaptive profiles of
business entities within the data, and generates alerts to
notify users of behavior that appears unusual. Its data anal-
ysis comprises the following stages: validation, preprocess-
ing, loading, migration, profiling, eventing and alerting. In
the preprocessing stage, IEF takes a batch of transactions as
input and replaces the various original business entity identi-
fiers with simplified surrogate keys. Normally, a transaction
contains a heterogeneous mixture of identifiers for business
entities, such as account, branch, customer, transaction code
and transaction type. The surrogate key assignment is per-
formed by a critical subsystem, the Surrogate Key Server
that allocates a uniform system of internal identifiers to the
heterogeneous mixture of business entity identifiers.

In the company’s early implementation of the SK Server
(year 2000), the creation/lookup of surrogate keys was rec-
ognized as a major barrier to scalability. The implementa-
tion consisted of an in-memory cache of previously mapped
entity-ID/surrogate-key pairs, which incurred a very high
storage overhead, increasing both memory footprint and
garbage collection activity. As the number of distinct busi-
ness entities grew during the lifetime of the system, available
memory eventually was exhausted, bringing the system to
a halt. The stakeholder’s key scalability concern is to sup-
port an ever-growing number of distinct business entities
in the overnight batches of transactions, while maintaining
throughput and the system’s memory footprint within the
bounds defined in the system requirements. The problem
was corrected in a new design that uses a separate file-based
surrogate key lookup for the assignment of keys on large sets
of distinct business entities, such as accounts.

The main multi-criteria trade-off was in terms of memory
usage and throughput. The file-base design reduced memory
footprint by using a lookup file in disk. However, because
this file was serially searched, the time to replace the keys
grew with the number of entities, affecting throughput. The
memory-based design, on the other hand, improved through-
put by using a HashMap, at the cost of memory consuption.

The case study consisted of running execution experi-
ments to analyze and compare the scalability of the two
designs, from the validation to the migration stages. The
designs were executed on a test machine containing twin In-
tel(R) Xeon(TM) processors, 2.40 GHz CPUs, 2GB of mem-
ory and 4x60GB disk with RAID. Harness tests were run
until the machine reached its physical limits or until the
system could no longer comply with its requirements. The
memory-based version of the system, which used a memory
cache only implemented the cache as a Java Hashtable ob-
ject allocated in the Java Virtual Machine (JVM) heap. At
the time, the preprocessor stage was expected to run on a
JVM with maximum available memory of 500MB, which im-
posed a hard upper limit on the number of entity-key pairs
that could be cached. The file-based design restricts the
amount of heap used to cache entity-key pairs, by using the
memory lookup only for small sets of distinct entities, such
as branch and transaction type. Switching from one design
to another was a matter of setting a parameter in the system
configuration. The system is implemented in Java and has
1,556 classes and 326,293 lines of code.

In both designs, the size of the maximum JVM heap was
set to 500MB to mimic the environment at the time the
first version was on operation. The number of threads han-
dling the data migration to the operational data store was
configurable. Thus, we studied a total of six machine config-
urations in the case study, by varying the number of migra-
tion threads (one, three and five) and alternating the lookup
design (file-based and memory-based). Due to space con-
straints, we discuss only two configurations in the remain-
der of this section, one for the memory-based design and the
other for the file-based design, both with five threads.

4.1 Framework Instantiation
After conferring with the stakeholder, we determined that

average throughput, memory usage and disk usage should
be the system qualities to be measured in the case study as
dependent variables. Throughput and memory usage were
primary concerns, as the system must be able to complete
its analysis overnight and without running out of memory.
Disk usage was also chosen as a dependent variable of in-
terest because in adopting a file-base lookup, the usage of
space holding the keys is shifted from memory to disk, and
the stakeholder needs to analyze if this shift would impose
a scalability problem. Throughput was measured as the av-
erage number of transactions per second, memory usage as
the footprint of the JVM heap size and disk usage as the
percentage of available disk space used. Network usage is
a less important property that can also affect the system
throughput. However, because network usage not directly
related with the algorithm for creating and looking up sur-
rogate keys, it was assumed to be a nuisance variable.

We therefore instantiated our framework as follows:

Scaling dimensions:
Number of distinct business entities, number of
concurrent threads

Non-scaling variables:
Memory- vs file-based design, JVM memory size

Nuisance variables:
Network bandwith

Dependent variables:
Throughput, memory usage, disk usage

The stakeholder has declared that for a typical bank, the
system should be able to process batches of 30 million trans-
actions and deal in total with over 50 million business enti-
ties: 30 million accounts, 20 million customers, 1 thousand
branches, 115 transaction codes and 130 transaction types.

The distribution of business entities was estimated by us-
ing a sample of 15-months’ worth of data. The estimated
number of business entities involved in transactions on a
given batch is in average 36.66 million million with stan-
dard deviation of 5 million. We therefore set the desired
average and acceptable bounds for the system qualities of
interest and the likely distribution of business entities for
the data analysis system as following:

- Number of distinct business entities: 0 - 50 million,
with an average number per batch of 36.66 million
and a standard deviation of roughly 5 million entities.

- Number of concurrent threads: 1 - 5 lookup threads
- Average throughput : 100 transactions/second 3

- Memory usage: 0 - 500MB
- Disk usage:0 - 24GB

4.2 Measurement of System Qualities
In order to measure the system qualities of the two config-

urations, we ran jobs on the input data that produce daily
summaries of the transactions. The experiment consisted
of running each configuration against an increasing num-
ber of distinct entities. For such, we generated 5 sets of 5
million transactions containing, respectively, the following
rough numbers of distinct entities: 1.5 thousand, 6 thou-
sand, 50 thousand, 500 thousand and 5 million. Each ex-
periment was run two to three times, individual measure-
ments were recorded periodically, and the average number
was used. Although the experiment cannot prove that the
new design scales to the required production data load, it is
sufficient to demonstrate the different scalability character-
istics of the two designs.

We measured the machine configurations behavior for the
datasets described above and plotted the measurements in
a number of data plots. Figure 3.a shows plots of JVM heap
size against the number of distinct entities for the memory-
based and the disk-based configurations. In the memory-
based configuration, heap usage reaches 500MB, which was
the maximum memory available to the JVM at the time.
Therefore, the JVM runs out of memory at just a little over
4 million distinct entities in memory, bringing the system
to a halt. In the disk-based configuration, heap usage is
bound to around 20MB, as just the business entities with
few distinct values are held in memory (roughly 1200 en-
tities). Figure 3.b plots throughput against the number of
entities. In the memory-based configuration, as the JVM
runs out of memory, the throughput goes to zero because of
virtual memory swapping. In the disk-based configuration,
throughput decreases slowly, as the number of entities to
be searched for a lookup increases. Disk usage, although a
stakeholder concern, was 1%–2% of the total available space
in both configurations, proving not to be a problem. Due to
space constraints, we omit the disk usage plots.

3Harness tests were run in a machine that was substantially
less powerful then the one normally used in the production
environment. Based on the experience of the testing group
at Fortent, we aimed for an average of at least 100 transac-
tions/second for the testing machine.

Figure 3: Memory vs. File Design

4.3 Scalability Analysis
For the case study, the stakeholder was interested only

in identifying the preferred machine configuration. As de-
scribed in Section 3.2, we defined preference functions for
each measured quality, in particular throughput (unchanged
from its original value), available heap (total memory minus
memory usage) and available disk (total disk minus disk
usage), so that a higher value represents a more preferred
outcome; note that the bounds established by the require-
ments for the system qualities serve as the bounds for these
corresponding preference functions. As also described in
Section 3.2, we then computed normalized values of the mea-
sured data according to Equation 1 with respect to the lower
and upper bounds of each quality. We enhanced the normal-
ization so that when a preference value was lower than the
required lower bound, then a penalty value of −1 was used
instead of the computed normalized value.

More formally, the normalized preference of a throughput
value x is defined by t̂(x)4:

t̂(x) =

−1, if x < 100,

x−100
400−100 , otherwise.

(2)

The normalized preference of a heap usage value y is de-
fined by ĥ(y):

ĥ(y) =

−1, if y > 500,
500−y
500−0 , otherwise.

(3)

4A upper-limit of 400 transactions/second (close to the max-
imum observed throughput) was used for mathematical con-
venience.

And the normalized preference of a disk usage value z is
defined by d̂(z):

d̂(z) =

−1, if z > 24,
24−z
24−0 , otherwise.

(4)

Given these normalized preference functions, we then de-
fined a utility function reflecting the stakeholder’s goals for
optimizing the measured system qualities. In particular, the
stakeholder declared that it is 10 times as important to op-
timize throughput and to optimize memory usage as it is
to optimize disk usage, since disk storage is becoming in-
creasingly cheaper. This results in the following preference
function U(x, y, z):

U(x, y, z) =
10t̂(x) + 10ĥ(y) + d̂(z)

21
(5)

Note that we have chosen to normalize the weights so that
they sum to one.

Figure 3.c shows a plot of Formula 5 against the measured
range of distinct entities for the memory-based configuration
and the disk-based configuration, with no extrapolation be-
yond the measured range. The plot shows that the utility
of the memory-based lookup design exceeds that of the file-
based one for most of the measured range, but drops to
zero after a critical point of approximately 4 million distinct
business entities. The file-based lookup implementation has
its utility dropping only slightly and very smoothly from
roughly 0.7 to 0.6 as the number of distinct entities increase.
No extrapolation was necessary to show the superiority of
the file-base lookup configuration over the other one. As
in average a batch has to handle in average of 36.66 mil-
lion with standard deviation of 5 million business entities
in the production deployment and the JVM memory, at the
time, was limited to 500MB, a utility of zero disqualifies the
memory-based lookup solution from consideration.

In hindsight, the file-based design may appear to be ob-
viously superior to the memory-based design, but this was
not at all obvious when the memory-based design was first
developed. In fact, if the designs had been compared only in
terms of the load at the time the memory-based system was
first being developed, then the memory-based design would
have been selected instead of the file-based design. Only
by doing a proper analysis over the full range of the scaling
dimensions are we able to select the most scalable design.

Being a retrospective study, the analysis was eased by
the fact that the scalability requirements were well-known
and both designs were implemented, so that reliable metrics
could be collected and analyzed. We also knew that the
file-based lookup solution could handle the batches with 30
million transactions and 50 million distinct entities required
at the time. However, as the number of entities has been
increasing beyond the expected range in the past years, the
disk design has now reached its limits in terms of scalability
and is being currently re-implemented with the support of
our scalability framework.

Although the preference and utility functions provided by
the stakeholder were sufficient to show the superiority of the
disk-based design, we recognize that other analyses may re-
quire more complex preference and utility functions. Finally,
for its retrospective nature, we could not assess the overhead
of such analysis in the development lifecycle. These issues
currently are being tackled by another case study.

5. RELATED WORK
Like ourselves, other authors have questioned the mean-

ing and use of the term scalability and have attempted to
provide better definitions [15, 32, 7, 34]. One particular
area in which scalability enjoys precise characterization is
parallel computing, where scalability metrics such as fixed-
size speedup and fixed-time speedup have been established
and accepted [17]. However, because of fundamental differ-
ences between parallel computing and other classes of sys-
tems, such metrics cannot be applied broadly. Another area
where scalability receives a more systematic treatment is
model checking, where the state space size can be taken
as an indicator of the scalability of the techniques used to
tackle the so-called state explosion problem [12].

Measurement and prediction of certain qualities repre-
sented in our framework as dependent variables have been
studied for many years, particularly in the area of perfor-
mance evaluation, where well established models such as
queuing networks, Petri nets and stochastic process alge-
bras are used to estimate and compare the performance of
one or more machine configurations. Many of these solu-
tions propose extensions to standards and notations such
as MDA, UML, architecture description languages (ADLs),
OWL-S and WSOL to incorporate annotations for perfor-
mance prediction [35]. Others recognize that system mod-
els evolve, and some of them extend the Software Perfor-
mance Engineering (SPE) process to deal with this prob-
lem [6]. Finally, there are works that use monitoring to
model and predict performance [9]. These approaches can
be specialized for different kinds of systems or technologies,
such as component-based systems and middleware, by ex-
ploiting knowledge about the technology to aid performance
prediction [36]. All of these approaches can be applied with
our framework to produce the raw measurements of behav-
ioral qualities needed for subsequent scalability analysis.

Outside the realm of performance analysis, the most no-
table related works are found in the field of architecture
evaluation. A number of methods have been developed to
evaluate system qualities at the architecture level, such as:
Scenario-based Architecture Analysis Method (SAAM) [20],
Architecture Tradeoff Analysis Method (ATAM) [22], Cost
Benefit Analysis Method (CBAM) [21], Active Reviews for
Intermediate Designs (ARID) [10] and Scenario-Based Ar-
chitecture Reengineering (SBAR) [4]. These methods gener-
ally identify the quality goals of interest and then highlight
the strengths and weaknesses of the architecture to meet
the desired goals. Depending on the method, the evalua-
tion explicitly addresses a single quality or multiple quality
goals. The latter are the ones that might be perceived as
overlapping with our work. The main difference lies in the
fact that none of them treats the scaling of system char-
acteristics affecting the qualities of interest in an explicit
form. ATAM and CBAM, for example, propose the use of
growth and exploratory scenarios, but neither provide guid-
ance on how to devise these scenarios nor treat them differ-
ently from use case scenarios in the analysis process. Growth
and exploratory scenarios represent snapshots of the system
at some time in the future, catering possibly for analysis of
boundary cases. Nevertheless, we claim that to truly un-
derstand the scalability of a system one needs to unveil the
relationship between the operational characteristics of the
system and the full range of its environmental and design
characteristics, in an explicit and continuous form. In any

case, these and other methods could be adapted or used
to analyze scalability according to our framework. Also re-
lated are works that use utility theory for allocating system
resources. Bennani and Menasce, for example, propose a
solution that dynamically redeploys the servers of a data
center in order to maximize some global utility function [5].
These, however, normally are targeted at performance met-
rics and do not provide an explicit treatment of scalability.

Specifically on scalability, previous papers attempted to
adapt scalability notions for parallel computing to other
classes of systems, particularly distributed systems. Jo-
galekar and Woodside defined an effectiveness metric com-
puted as a function of throughput and quality of service [17].
In other work, Jogalekar and Woodside concentrated on
finding the most economical path for evolving a system by
relating a notion of the power of the system to the cost of
obtaining this power [19]. Both papers are limited to the
particular domain of distributed systems and limited to an-
alyzing scalability with respect to performance. More recent
work has targeted narrow classes of systems and technolo-
gies, or are limited to performance as the scalability metric
of interest. For instance, Masticola et al. used early life-
cycle models to analyze the scalability of component-based
systems in terms of performance metrics [26]. Steen et al.
described a systematic approach to guide the distribution
and application of scaling techniques, such as replication
and caching [32]. Weyuker and Avritzer create a Perfor-
mance Non-Scalability Likelihood (PNL) metric in order to
assess the expected loss in performance for a given work-
load. In contrast, our framework attempts to establish a
uniform notion of scalability that can be applied in a wide
variety of application domains and can support analysis of
scalability with respect to a wide variety of system qual-
ities. A nice work on scalability was done by Weinstock
and Goodenough [34]. They also discuss the lack of a uni-
form definition of scalability and propose an audit to help
to expose issues that, if overlooked, can lead to scalability
problems. Such audit could be used in the context of our
framework to highlight possible issues that will lead to the
appropriate selection of variables.

6. CONCLUSION AND FUTUREWORK
Scalability is a frequently claimed attribute of software

systems. This paper has discussed the imprecise use of the
term in computing, the lack of consensus on the meaning
of the term, and the potential problems that ensue as a
result. In an attempt to improve the precision and util-
ity of uses of the term, we have defined a framework for
characterizing and analyzing the scalability of software sys-
tems. The framework can be supported with instantiation
methods and analysis techniques and tools to deal with the
particular characteristics of different problem domains. For
instance, on another large case study, we are currently using
goal-oriented requirements engineering to elicit the scalabil-
ity requirements, select the variables and derive the pref-
erence and utility functions, while the raw data are being
collected by using instrumentation and profiling tools. The
paper presented a method for comparative scalability anal-
ysis based on microeconomics theory and illustrated it with
a case study drawn from the financial services industry.

The analysis approach described has limitations that we
intend to address in future work. For instance, we currently
do not deal with variables that are not numeric or linearly or-

dered, with co-dependent variables, or with intransitive pref-
erences. There exist sound mathematical techniques that
can be used in such situations, such as preference logics [1].
Additionally, more research effort should go into establishing
methods for deriving preference and utility functions that
are meaningful and suitable to express the causal relation-
ships between factors and dependent variables in a scaling
system. In, Oslo and Rodgers have done some preliminary
work in this direction, using the WinWin negotiation model
to derive preference functions [16].

There are several additional future directions that can be
explored, particularly in the field of requirements engineer-
ing. Scalability should be dealt with as early as the require-
ments phase. However, to the best of our knowledge, there
is no definitive work on requirements and scalability. We
are currently applying and investigating the suitability of
goal-oriented requirements engineering as a means to iden-
tify scalability goals and break them down into lower-level
requirements that can be used to identify variables for the
analysis and define preferences and utility functions. Addi-
tionally, it is frequently the case that system measurement
must be performed in restricted environments that do not
adequately present the full range of expected characteristics
and workload of a production environment. In such cases it
would be desirable to extrapolate the results of scalability
analysis to the expected production range of scaling dimen-
sions. However, extrapolation must be done with extreme
care and must be informed by knowledge of the underlying
computational phenomena of the machine (such as the com-
putational complexity of the key algorithms and data struc-
tures that affect the measured system qualities). We also in-
tend to explore scalability of software tools and techniques,
which is a particularly important and frequently raised con-
cern in software engineering research and practice, but one
that begs for more systematic treatment.

7. ACKNOWLEDGMENTS
This work was partially supported by the European IST

FET programme in project SENSORIA (IST-2005-016004).
Leticia Duboc is funded under a studentship from UCL.
David Rosenblum holds a Wolfson Research Merit Award
from the Royal Society. The authors gratefully thank Rami
Bahsoon, Antonio Carzaniga, Sebastian Elbaum, Wolfgang
Emmerich, José Faro, Anthony Finkelstein, Gorka Guardi-
ola, Emmanuel Leitier, Damon Wischik and Alex Wolf for
discussions of this work, and the anonymous referees for
their useful comments.

8. REFERENCES
[1] H. Andréka, M. Ryan, and P.-Y. Schobbens.

Operators and laws for combining preference relations.
Journal of Logic and Computation, 12(1):13–53, 2002.

[2] P. Avesani, C. Bazzanella, A. Perini, and A. Susi.
Facing scalability issues in requirements prioritization
with machine learning techniques. In Proc. RE ’05,
pages 297–306, Washington, DC, USA, 2005. IEEE
Computer Society.

[3] L. A. Barroso, J. Dean, and U. Hölzle. Web search for
a planet: The Google cluster architecture. IEEE
Micro, 23(2):22–28, March–April 2003.

[4] P. Bengtsson and J. Bosch. Scenario-based software
architecture reengineering. In Proc. ICSR ’98, page

308, Washington, DC, USA, 1998. IEEE Computer
Society.

[5] M. N. Bennani and D. A. Menasce. Resource
allocation for autonomic data centers using analytic
performance models. In Proc. ICAC ’05, pages
229–240, Washington, DC, USA, 2005. IEEE
Computer Society.

[6] A. Bertolino and R. Mirandola. Software performance
engineering of component-based systems. In Proc. 4th

WOSP, pages 238–242, New York, USA, 2004. ACM
Press.

[7] A. B. Bondi. Characteristics of scalability and their
impact on performance. In Proc. 2nd WOSP, pages
195–203. ACM Press, 2000.

[8] G. Brataas and P. Hughes. Exploring architectural
scalability. In Proc. 4th WOSP, pages 125–129. ACM
Press, 2004.

[9] M. Caporuscio, A. D. Marco, and P. Inverardi.
Run-time performance management of the Siena
publish/subscribe middleware. In Proc. 5th WOSP,
pages 65–74, New York, USA, 2005. ACM Press.

[10] P. C. Clements. Active reviews for intermediate
designs, 2000. SEI, Carnegie Mellon University
CMU/SEI-2000-TN-009.

[11] H. Eschenauer, J. Koski, and A. Osyczka.
Multicriteria Design Optimization: Procedures and
Applications. Springer-Verlag, 1990.

[12] E. M. C. O. Grumberg and D. A. Peled. Model
Checking. The MIT PRess, 1999.

[13] D. B. Gustavson. The many dimensions of scalability.
In Proc. 39th IEEE Computer Society Int’l Computer
Conference, pages 60–63, February 1994.

[14] M. Handley, C. Perkins, and E. Whelan. Session
announcement protocol. RFC 2974, Network Working
Group, Internet Engineering Task Force, Oct. 2000.
Accessed from http://www.faqs.org/ftp/rfc/pdf/
rfc2974.txt.pdf on 3 April 2006.

[15] M. D. Hill. What is scalability? ACM SIGARCH
Computer Architecture News, 18(4):18–21, 1990.

[16] H. P. In, D. Olson, and T. Rodgers. Multi-criteria
preference analysis for systematic requirements
negotiation. In Proc. COMPSAC ’02, pages 887–892,
Washington, DC, USA, 2002. IEEE Computer Society.

[17] P. Jogalekar and M. Woodside. Evaluating the
scalability of distributed systems. IEEE Transactions
on Parallel and Distributed Systems, 11(6):589–603,
2000.

[18] P. P. Jogalekar and C. M. Woodside. A scalability
metric for distributed computing applications in
telecommunications. In Proc. 15th Int’l Teletraffic
Congress (ITC-15), volume 2a, pages 101–110, 1997.

[19] P. P. Jogalekar and C. M. Woodside. A scalability
metric for distributed computing applications in
telecommunications. In Proc. Fifteenth Int’l Teletraffic
Congress (ITC-15), volume 2a, pages 101–110, 1997.

[20] R. Kazman, G. Abowd, L. Bass, and P. Clements.
Scenario-based analysis of software architecture. IEEE
Softw., 13(6):47–55, 1996.

[21] R. Kazman, J. Asundi, and M. Klein. Quantifying the
costs and benefits of architectural decisions.

In Proc. ICSE ’01, pages 297–306, Washington, DC,
USA, 2001. IEEE Computer Society.

[22] R. Kazman, M. Klein, M. Barbacci, T. Longstaff,
H. Lipson, and J. Carriere. The architecture tradeoff
analysis method. In Proc. ICECCS ’98, pages 68–78,
1998.

[23] V. Kumar and A. Gupta. Analysis of scalability of
parallel algorithms and architectures: a survey. In
Proc. 5th Int’l Conference on Supercomputing, pages
396–405, New York, USA, 1991. ACM Press.

[24] M. Laitinen, M. E. Fayad, and R. P. Ward. Thinking
objectively: The problem with scalability.
Communications of the ACM, 43(9):105–107, 2000.

[25] E. A. Luke. Defining and measuring scalability. In
Proc. Scalable Parallel Libraries Conference, pages
183–186. IEEE Press, October 1993.

[26] S. Masticola, A. B. Bondi, and M. Hettish.
Model-based scalability estimation in inception-phase
software architecture. In Proc. ACM/IEEE 8th

MoDELS/UML, pages 355–366, 2005.
[27] V. N. Rao and V. Kumar. Parallel depth first search.

part i. implementation. Int. J. Parallel Program.,
16(6):479–499, 1987.

[28] J. R. Ruthruff, S. Elbaum, and G. Rothermel.
Experimental program analysis: a new program
analysis paradigm. In Proc. ISSTA’06, pages 49–60,
New York, USA, 2006. ACM Press.

[29] R. Silverman. A cost-based security analysis of
symmetric and asymmetric key lengths, 2000. RSA
Laboratories Bulletin 13.

[30] C. U. Smith and L. G. Williams. Performance
Solutions: A Practical Guide to Creating Responsive,
Scalable Software. Addison-Wesley Publishing
Company, September 2001.

[31] The 2020 Science Group. Towards 2020 Science.
technical report, Microsoft Corporation, Mar. 2006.
Accessed from http://research.microsoft.com/
towards2020science/ on 1 July 2006.

[32] M. van Steen, S. van der Zijden, and H. J. Sips.
Software engineering for scalable distributed
applications. In Proc. 22nd Int’l Computer Software
and Applications Conference, pages 285–293, 1998.

[33] H. R. Varian. Intermediate Microeconomics: A
Modern Approach. W. W. Norton, 6th edition, 2003.

[34] C. B. Weinstock and J. B. Goodenough. On system
scalability, 2006. SEI, Carnegie Mellon University
CMU/SEI-2006-TN-012.

[35] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen,
T. Israr, and J. Merseguer. Performance by unified
model analysis (PUMA). In Proc. 5th WOSP, pages
1–12. ACM Press, 2005.

[36] X. Wu and M. Woodside. Performance modeling from
software components. In Proc. 4th WOSP, pages
290–301, New York, USA, 2004. ACM Press.

[37] D. Xu, G. F. Riley, M. H. Ammar, and R. Fujimoto.
Enabling large-scale multicast simulation by reducing
memory requirements. In Proc. PADS ’03, page 69,
Washington, DC, USA, 2003. IEEE Computer Society.

[38] H. Yokota. Performance and reliability of secondary
storage systems. In Proc. of 4th WMSCI, pages
668–673, 2000.

