UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Reentry in survived subepicardium coupled to depolarized and inexcitable midmyocardium: Insights into arrhythmogenesis in ischemia phase 1B

Jie, X; Rodriguez, B; de Groot, JR; Coronel, R; Trayanova, N; (2008) Reentry in survived subepicardium coupled to depolarized and inexcitable midmyocardium: Insights into arrhythmogenesis in ischemia phase 1B. HEART RHYTHM , 5 (7) 1036 - 1044. 10.1016/j.hrthm.2008.03.025.

Full text not available from this repository.

Abstract

BACKGROUND Delayed ventricular arrhythmias during acute myocardial ischemia (1B arrhythmias) are associated with an increase in tissue impedance and are most likely sustained in a thin subepicardial Layer.OBJECTIVE The goat of this study was to test the hypothesis that heterogeneous uncoupling between depolarized midmyocardium and surviving subepicardium results in heterogeneous refractoriness in the Latter, providing the reentry substrate after a premature beat.METHODS A 3-dimensional bidomain slab was constructed comprising a normal subepicardial Layer coupled to a slightly depolarized (-80 to -60 mV) but inexcitable midmyocardium. Experimentally measured tissue impedance served as input for the model. Four stages of heterogeneous uncoupling between the 2 layers were simulated, each corresponding to an experimental ischemic impedance value. Effective refractory periods (ERP), conduction velocities, and inducibility of reentry were examined.RESULTS Heterogeneous uncoupling resulted in subepicardial ERP dispersion, allowing reentry to occur. The minimum ERP dispersion needed to induce reentry was 28 ms. Reentry induction was only possible in this model at the 2 intermediate stages of uncoupling, and only when midmyocardial resting membrane potential was more negative than -60 mV. Complete uncoupling of the layers resulted in normal subepicardial conduction without arrhythmias. The minimum length of the reentrant pathway was 2.5 cm, comparable to 2.4 cm reported in previous experiments.CONCLUSION Heterogeneous uncoupling to a negative sink such as depressed inexcitable midmyocardium may be a substrate for ischemia 1B arrhythmias. Total uncoupling removes the arrhythmogenic substrate.

Type:Article
Title:Reentry in survived subepicardium coupled to depolarized and inexcitable midmyocardium: Insights into arrhythmogenesis in ischemia phase 1B
DOI:10.1016/j.hrthm.2008.03.025
Keywords:computer model, cellular uncoupling, reentry, arrhythmias, vulnerability, PORCINE HEART, VENTRICULAR-ARRHYTHMIAS, MYOCARDIAL-ISCHEMIA, ACTION-POTENTIALS, INJURY CURRENT, MECHANISMS, CURRENTS, RABBIT, MUSCLE, EXCITABILITY
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science

Archive Staff Only: edit this record