Laczkovich, M; (1996) Decomposition using measurable functions. **CR ACAD SCI I-MATH** , 323 (6) 583 - 586.

Full text not available from this repository.

## Abstract

It has been known for some time (although no proof has been published) that, given two Lebesgue-measurable sets A and B in R(n) that are equidecomposable under isometries g(1),...,g(k) belonging to an amenable group, then the characteristic functions chi(A) and chi(B) can be decomposed as sums of nonnegative Lebesgue-measurable functions f(i) and f(i)og(i)(-1) (i = 1,...,k), respectively. We give a simple direct proof using a linear operator mapping the space of bounded functions onto L(infinity).

Type: | Article |
---|---|

Title: | Decomposition using measurable functions |

UCL classification: | UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Mathematics |

Archive Staff Only: edit this record