UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Quantitative photoacoustic imaging: fitting a model of light transport to the initial pressure distribution

Cox, BT; Arridge, SR; Kostli, KP; Beard, PC; (2005) Quantitative photoacoustic imaging: fitting a model of light transport to the initial pressure distribution. In: Oraevsky, AA and Wang, LV, (eds.) Photons Plus Ultrasound: Imaging and Sensing 2005. (pp. 49 - 55). SPIE-INT SOC OPTICAL ENGINEERING

Full text not available from this repository.

Abstract

Photoacoustic imaging, which generates a map of the initial acoustic pressure distribution generated by a short laser pulse, has been demonstrated by several authors. Quantitative photoacoustic imaging takes this one stage further to produce a map of the distribution of an optical property of the tissue, in this case absorption, which can then be related to a physiological parameter. In this technique, the initial pressure distribution is assumed to be proportional to the absorbed laser energy density. A model of light transport in scattering media is then used to estimate the distribution of optical properties that would result in such a pattern of absorbed energy. The light model used a finite element implementation of the diffusion equation (with the delta-E(3) approximation included to improve the accuracy at short distances inside the scattering medium). An algorithm which applies this model iteratively and converges on a quantitative estimate of the optical absorption distribution is described. 2D examples using simulated data (initial pressure maps) with and without noise are shown to converge quickly and accurately.

Type:Proceedings paper
Title:Quantitative photoacoustic imaging: fitting a model of light transport to the initial pressure distribution
Event:6th Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics
Location:San Jose, CA
Dates:2005-01-23 - 2005-01-25
ISBN:0-8194-5671-3
DOI:10.1117/12.597190
Keywords:photoacoustic, quantitative imaging, optical absorption coefficient, RECONSTRUCTION, TOMOGRAPHY
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science
UCL > School of BEAMS > Faculty of Engineering Science > Medical Physics and Bioengineering

Archive Staff Only: edit this record