UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns

Zhu, R; Howorka, S; Proll, J; Kienberger, F; Preiner, J; Hesse, J; ... Hinterdorfer, P; + view all (2010) Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns. NAT NANOTECHNOL , 5 (11) 788 - 791. 10.1038/NNAN0.2010.212.

Full text not available from this repository.

Abstract

Atomic force microscopy(1) (AFM) is a powerful tool for analysing the shapes of individual molecules and the forces acting on them. AFM-based force spectroscopy provides insights into the structural and energetic dynamics(2-4) of biomolecules by probing the interactions within individual molecules(5,6), or between a surface-bound molecule and a cantilever that carries a complementary binding partner(7-9). Here, we show that an AFM cantilever with an antibody tether can measure the distances between 5-methylcytidine bases in individual DNA strands with a resolution of 4 angstrom, thereby revealing the DNA methylation pattern, which has an important role in the epigenetic control of gene expression. The antibody is able to bind two 5-methylcytidine bases of a surface-immobilized DNA strand, and retracting the cantilever results in a unique rupture signature reflecting the spacing between two tagged bases. This nanomechanical approach might also allow related chemical patterns to be retrieved from biopolymers at the single-molecule level.

Type:Article
Title:Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns
DOI:10.1038/NNAN0.2010.212
Keywords:ATOMIC-FORCE MICROSCOPY, SINGLE-MOLECULE, OLIGONUCLEOTIDE MICROARRAYS, COMPLEMENTARY STRANDS, REAL-TIME, SPECTROSCOPY, ANTIBODIES, 5-METHYLCYTOSINE, POLYMERASE, PROTEIN
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Chemistry

Archive Staff Only: edit this record