NODE AND PLACE,
A study on the spatial process of railway terminus area redevelopment in central London

Thesis submitted for the degree of PhD in Architecture

Khaisri Paksukcharern Thammaruangrsri

The Bartlett School of Graduate Studies
University College London
University of London

2003
ABSTRACT

Bertolini and Spit (1998) have argued that any significant transport node should ideally also be a significant place in the city. However, this rarely seems to be the case, and the resolution of this disparity, which they refer to as the 'node-place' problem, in practice means redesigning what are currently regional-to-local transport nodes to also function as local pedestrian nodes. This is a complex design task, made more difficult by the fact that termini, although often located in strategic inner urban areas, are also frequently scarred by railway structures and adjacent to large wastelands or blighted neighbourhoods. Not surprisingly, there are as yet few success stories, and conversely many cases where attempts to address this problem through design have fallen below expectations. This problem, of converting railway termini and their surrounding areas into urban places, is the subject of this thesis.

The argument proposes that the 'node-place' problem is fundamentally a spatial one. Using the methodology of space syntax, together with Hillier's compound theories of how vibrant urban places are progressively formed by the influence of the urban grid on natural movement (Hillier et al 1993), and the subsequent influence this has on land use patterns (Hillier 1996) and centre formation (Hillier 2000), the thesis investigates the spatial structure and functioning of eleven mainline railway terminus areas in central London. This is undertaken through a series of studies of increasing precision: historical figure-ground analyses of station areas; syntactic analysis of station contexts and the influence of the station on that context; detailed observation of movement patterns and rates in station contexts; and finally the synthesis of all data types into a single picture.

On the basis of the results of these studies, it is argued that the key to the successful creation of an urban place out of a transport node is the same as that which prevails in cities in general; namely that spatial configuration is critical, and that the spaces inside and outside railway termini have to become an 'integrated part' of the local system of pedestrian movement. In order to achieve this, space has to be re-engineered to overcome the current tendency of stations to work as urban 'negative attractors' through the effect of the large blockages they impose on the development of local patterns of natural movement, in spite of the station being in itself a 'point attractor'. A node can become a place when it also becomes a 'configurational attractor' in the local network.
TABLE OF CONTENTS

Abstract 2
Table of contents 3-7
List of illustrations 8-20
Acknowledgement 21

CHAPTER ONE
Introduction
1.1 Statement of the problem 22
1.2 The research scope 30
1.3 The structure of the argument and the theoretical framework 33
1.4 The thesis outline 37
* Figure 1.1-1.13 41-46

CHAPTER TWO
Idea of node and place in the changing role of railway termini in cities
The historical and literature review
2.1 Changing roles of railway termini in cities 48
 2.1.1 The first phase:
 the arrival of railways and the grand termini as the gateway to cities 49
 2.1.2 The second phase:
 the modern railway termini amidst the blighted urban settings 51
 2.1.3 The third phase:
 the return of the railways era and the extensive plan for the terminus area
 redevelopment 54
2.2 The evolution of railway termini, summarising as a node-place diagrammatic
 framework 58
2.3 An overview of some recent railway terminus area redevelopment projects
 and their distinctive node-place synergies 60
2.4 Morphological and empirical studies
 Ideas on the spatial relationship between local areas and the urban fabric and its
 implication on pedestrian space use pattern 64
2.5 Space syntax methodology 68
 2.5.1 Spatial representation 69
 2.5.2 Syntactic measures 70
 2.5.3 Measuring lively and quiet places 71
 2.5.4 Space syntax applications on transport related projects 73
2.6 Discussion and conclusions 79
* Figure 2.1-2.14 83-91
CHAPTER THREE
The internal dynamics of railway termini

3.1 Introduction 92
3.2 Programme of study 96
3.3 The case studies 98
 3.3.1 Introduction to the station location, layout plan and functional arrangement
 3.3.1a Victoria Station 99
 3.3.1b Euston Station 101
3.4 The internal spatial representation 102
 3.4.1 Methods 103
 3.4.2 All line axial analysis: Spacebox 104
 3.4.3 Convex shape analysis: Pesh 106
 3.4.4 Discussion on the spatial models of Victoria and Euston Stations 107
3.5 The isovist analysis
 3.5.1 Methodology 109
 3.5.2 Point isovists 109
 3.5.3 Moving isovists 110
 3.5.4 Discussion on the isovist analysis of Victoria and Euston Stations 112
3.6 The empirical observation of space use patterns
 3.6.1 Methodology 113
 3.6.2 Pedestrian movement dispersal pattern 114
 3.6.3 Pedestrian stationary activity pattern 117
 3.6.4 The relationship between moving and atatic activity patterns in Victoria and Euston Stations 118
3.7 Discussion and Conclusion 119
* Figure 3.1-3.32 123-156

CHAPTER FOUR
The urban morphology of London's railway terminus areas

Their urban physical patterns

4.1 Development of London's mainline railway termini: a historical review 158
 4.1.1 An overview on the development of London's railways 158
 4.1.2 The development sequence of London's manline railway termini in the city fabric
 4.1.2a The first terminus 159
 4.1.2b Railway Mania; series of termini are built up to the city's edge 160
 4.2.1c Invasion to the city at last 161
 4.1.3 The relationship between London's termini and the city's global structure 163
4.2 The changing morphology of London's railway terminus areas 164
 4.2.1 Method and scope of study 164
4.2.2 The figure and ground study of London's railway terminus areas

4.2.2a Euston Station area 167
4.2.2b King's Cross and St.Pancras Station area 168
4.2.2c Liverpool Street Station area 170
4.2.2d Fenchurch Street Station area 172
4.2.2e London Bridge Station area 174
4.2.2f Cannon Street Station area 175
4.2.2g Waterloo Station area 177
4.2.2h Charing Cross Station area 179
4.2.2i Victoria Station area 180
4.2.2j Paddington Station area 181
4.2.2k Marylebone Station area 183

4.3 Discussion

4.3.1 The morphology of London's railway terminus areas: the manifestation of the mutual influence of terminus structures and their urban settings 184
4.3.2 The relationship between the urban pattern of London's terminus areas and their current urban conditions 190

4.4 Conclusion 193

* Figure 4.1-4.19 195-217

CHAPTER FIVE

The spatial configuration of London's railway terminus areas

5.1 Railway termini and the spatial structure of their urban settings: The 'local-to-global' effects and the 'global-to-local' redevelopment process. 219
5.2 Programme of study 222
5.3 The spatial morphological analyses 223

5.3.1 Axial Analysis: the location of mainline railway termini within the spatial structure of London 223
5.3.2 Axial Analysis: London's railway terminus areas, the spatial structure and reflections on current urban condition and urban physical pattern 225

5.3.2a Euston Station area 226
5.3.2b King's Cross and St.Pancras Station area 228
5.3.2c Liverpool Street Station area 230
5.3.2d Fenchurch Street Station area 232
5.3.2e London Bridge Station area 233
5.3.2f Cannon Street Station area 235
5.3.2g Waterloo Station area 237
5.3.2h Charing Cross Station area 239
5.3.2i Victoria Station area 241
5.3.2j Paddington Station area 243
5.3.2k Marylebone Station area 247
5.3.3 Spatial Analysis: the internal embedding of London's railway termini 254

5.4 Discussions and conclusions 258
5.4.1 The spatial categorisation of London's railway terminus areas 258
5.4.2 The spatial related urban phenomena at London's railway terminus areas 262

* Figure 5.1-5.14 267-282

CHAPTER SIX
Patterns of pedestrian movement in London's railway terminus areas

6.1 The station-related movement patterns: railway termini as 'attractors' and 'negative attractors' 284
6.1.1 Method of the empirical study 286
6.1.2 Findings of the empirical observation 287
6.1.2a Euston Station area 288
6.1.2b Liverpool Street Station area 290
6.1.2c Fenchurch Street Station area 291
6.1.2d Cannon Street Station area 292
6.1.2e London Bridge Station area 293
6.1.2f Waterloo Station area 295
6.1.2g Charing Cross Station area 296
6.1.2h Victoria Station area 298
6.1.2i Paddington Station area 299
6.1.2j Marylebone Station area 300
6.1.3 Summary and analysis of the empirical findings: the effects of London's terminus structures as movement attractors and negative attractors 302

6.2 The urban grid-related movement pattern: the statistical analysis 305
6.2.1 Methods of the statistical analysis 306
6.2.2 The regression analysis 310
6.2.2a Euston Station area 310
6.2.2b King's Cross and St.Pancras Station area 311
6.2.2c Liverpool Street Station area 312
6.2.2d Fenchurch Street Station area 314
6.2.2e Cannon Street Station area 315
6.2.2f London Bridge Station area 315
6.2.2g Waterloo Station area 316
6.2.2h Charing Cross Station area 317
6.2.2i Victoria Station area 318
6.2.2j Paddington Station area 319
6.2.2k Marylebone Station area 321

6.3 Discussions and conclusions 322
* Figure 6.1-6.11 332-352
CHAPTER SEVEN
The spatial process of creating places out of nodes in railway terminus areas

7.1 The final regression analysis: the relationship between spatial embedding values and non-transport related space uses of the railway terminus buildings 354

7.2 London’s mainline railway terminus areas: a review of their node and place characteristics and development potential 359

7.3 Epilogue 375

* BIBLIOGRAPHY 378

* Appendix A: A brief investigation on the current urban condition of eleven railway terminus areas in central London 387

* Appendix B: Types of railway stations 413

* Appendix C:
 - C1 List of 90 surveyed railway station area redevelopment projects 417
 - C2 Illustration of some major projects 424

* Appendix D: Key station user statistic 437

* Appendix E: Gate observation on pedestrian movement rates: Victoria and Euston Stations 439

* Appendix F: Spatial data from the axial analysis of the modelling area of London’s railway terminus areas 442

* Appendix G: Sectional gate count database 444

* Appendix H: Database table for movement and spatial variables of eleven London’s railway terminus areas 465

* Appendix I: The allocation of sub-areas around London’s railway terminus areas for the statistical analysis 473
LIST OF ILLUSTRATIONS

CHAPTER ONE
Introduction

Figures:

Figure 1.1 Some examples of railway terminus area redevelopment projects 39
Figure 1.2 The location of all mainline railway termini in London 40
Figure 1.3 Liverpool Street Station area: current urban condition 41
Figure 1.4 Charing Cross Station area: current urban condition 41
Figure 1.5 Cannon Street Station area: current urban condition 41
Figure 1.6 Euston Station area: current urban condition 42
Figure 1.7 Victoria Station area: current urban condition 42
Figure 1.8 London Bridge Station area: current urban condition 42
Figure 1.9 Fenchurch Street Station area: current urban condition 43
Figure 1.10 Waterloo Station area: current urban condition 43
Figure 1.11 Paddington Station area: current urban condition 43
Figure 1.12 Marylebone Station area: current urban condition 44
Figure 1.13 King's Cross Station area: current urban condition 44

CHAPTER TWO
Idea of node and place in the changing role of railway termini in cities
The historical and literature review

Figures:

Figure 2.1 The City's Gateway 79
Figure 2.2 Railway termini in the early days built in variations of Classical style 79
Figure 2.3 The Railway Station, a painting by William Powell Frith (1819-1909) 79
Figure 2.4 Examples of major railway Wastelands in Europe 80
Figure 2.5 Examples of The late 20th century railway terminus 81
Figure 2.6 Examples of recent railway terminus area redevelopment projects in Europe 82
Figure 2.7 Multi-level spatial organisation of railway stations 83
Figure 2.8 The evolution of railway terminus area, node and place diagrammatic framework 84
Figure 2.9 Bertolini and Spil's idea of the railway station 85
Figure 2.10 Various node and place synergies 85
Figure 2.11 Examples proposed by Unwin for a station place 86
CHAPTER THREE
The internal dynamics of railway termini

Figures:

Figure 3.1 Victoria Station, local map around the terminus building 118
Figure 3.2 Victoria Station, main concourse level layout plan and functional arrangement 118
Figure 3.3 Victoria Station, interior space 119
Figure 3.4 Euston Station, local map around the terminus building 120
Figure 3.5 Euston Station, main concourse level layout plan and functional arrangement 121
Figure 3.6 Euston Station, interior space 121
Figure 3.7 Victoria Station, all line axial analysis/integration-N 122
Figure 3.8 Euston Station, all line axial analysis/integration-N 123
Figure 3.9 Victoria Station, convex shape analysis or ‘Pesh’ 124
Figure 3.10 Euston Station, convex shape analysis or ‘Pesh’ 125
Figure 3.11 Victoria Station, point isovists from all station entrances 126
Figure 3.12 Euston Station, point isovists from all station entrances 127
Figure 3.13 Victoria Station, moving isovists along an inbound route from Wilton Road into the Eastern concourse hall 128
Figure 3.14 Victoria Station, moving isovists along an outbound route from Platform Fifteen to the Underground entrance 129
Figure 3.15 Euston Station, moving isovists along an inbound route from Euston Road into the main concourse hall 130
Figure 3.16 Euston Station, moving isovists along an outbound route from Platform One to the Underground entrance 131
Figure 3.17 Victoria Station, serial photographic view 132
Figure 3.18 Euston Station, serial photographic view 132
Figure 3.19 Victoria Station, movement dispersal pattern on one weekday 133
Figure 3.20 Euston Station, movement dispersal pattern on one weekday 137
Figure 3.21 Victoria Station, combined movement dispersal pattern for all gates 140
Figure 3.22 Euston Station, combined movement dispersal pattern for all gates 140
Figure 3.23 Victoria Station, static snapshots (one weekday) 141
Figure 3.24 Euston Station, static snapshots (one weekday) 144
Figure 3.25 Victoria Station, combined movement dispersal and stationary activity pattern 146
Figure 3.26 Euston Station, combined movement dispersal and stationary activity pattern 147
Figure 3.27 Victoria Station, combined Spacebox and movement dispersal pattern 147
CHAPTER FOUR
The urban morphology of London's railway terminus areas
Their urban physical patterns

Figures:

Figure 4.1 History of London railway network 187
Figure 4.2 The Elliptical Ring. A diagram indicating the approximate position of mainline railway termini in relation to metropolitan London in the 19th century 188
Figure 4.3 Urban growth and the development of London's railway system 188
Figure 4.4 London in 1835, before the Railway Era 189
Figure 4.5 London in 1851, showing most of the newly built railway termini being located at the city's edge 190
Figure 4.6 London in 1905: showing both mainline and underground railway 191
Figure 4.7 Central London at present, showing mainline railway termini have been assimilated into the dense urban grid and now locate at the very heart of city 192
Figure 4.8 London's mainline railways and termini in relation to the urban supergrid 194
Figure 4.9 Euston Station area, local maps and figure and ground maps 194
Figure 4.10 King's Cross and St Pancras Station area, local maps and figure and ground maps 195
Figure 4.11 Liverpool Street Station area, local maps and figure and ground maps 196
Figure 4.12 Fenchurch Street Station area, local maps and figure and ground maps 198
Figure 4.13 London Bridge Station area, local maps and figure and ground maps 199
Figure 4.14 Cannon Street Station area, local maps and figure and ground maps 201
Figure 4.15 Waterloo Station area, local maps and figures and ground maps 202
Figure 4.16 Charing Cross Station area, local maps and figure and ground maps 204
Figure 4.17 Victoria Station area, local maps and figure and ground maps 205
Figure 4.18 Paddington Station area, local maps and figure and ground maps 206
Figure 4.19 Marylebone Station area, local maps and figure and ground maps 208
CHAPTER FIVE

The spatial configuration of London's railway terminus areas

Figures:
Figure 5.1 London axial map with the location of all mainline railway termini 256
Figure 5.2 London axial map, global integration (Log-intN) 257
Figure 5.3 London axial map, local integration (Log-int3) 258
Figure 5.4 Euston Station area, axial analysis: global integration-intN (with the station’s internal space included) 259
Figure 5.5 King’s Cross/St. Pancras Station area, axial analysis: global integration-intN (with the station’s internal space included) 260
Figure 5.6 Liverpool Street Station area, axial analysis: global integration-intN (with the station’s internal space included) 261
Figure 5.7 Fenchurch Street Station area, axial analysis: global integration-intN (with the station’s internal space included) 262
Figure 5.8 London Bridge Station area, axial analysis: global integration-intN (with the station’s internal space included) 263
Figure 5.9 Cannon Street Station area, axial analysis: global integration-intN (with the station’s internal space included) 264
Figure 5.10 Waterloo Station area, axial analysis: global integration-intN (with the station’s internal space included) 265
Figure 5.11 Charing Cross Station area, axial analysis: global integration-intN (with the station’s internal space included) 266
Figure 5.12 Victoria Station area, axial analysis: global integration-intN (with the station’s internal space included) 267
Figure 5.13 Paddington Station area, axial analysis: global integration-intN (with the station’s internal space included) 268
Figure 5.14 Marylebone Station area, axial analysis: global integration-intN (with the station’s internal space included) 271

Tables:
Table 5.1 Spatial embedding of eleven London’s railway terminus buildings, global and local integration 244
Table 5.2 Spatial embedding of eleven London’s railway terminus buildings in global and local integration value descending order 245
Table 5.3 Spatial embedding and intelligibility values in descending order 246
CHAPTER SIX
Patterns of pedestrian movement in London's railway terminus areas

Figures:
Figure 6.1 King's Cross-St. Pancras Station area, mean pedestrian flow rates (weekday / 12:00-18:00) 319
Figure 6.2a Euston Station area, key pedestrian routes around the terminus structures and allocation of gates for movement observation 320
Figure 6.2b Euston Station area, mean pedestrian flow rates (weekday / 12:00 to 18:00) 321
Figure 6.3a Liverpool Street Station area, key pedestrian routes around the terminus structures and the allocation of gates for movement observation 322
Figure 6.3b Liverpool Street Station area, mean pedestrian flow rates (weekday / 12:00 to 18:00) 323
Figure 6.4a Fenchurch Street Station area, key pedestrian routes around the terminus structures and the allocation of gates for movement observation 324
Figure 6.4b Fenchurch Street Station area, mean pedestrian flow rates (weekday / 12:00 to 18:00) 325
Figure 6.5a Cannon Street Station area, key pedestrian routes around the terminus structures and the allocation of gates for movement observation 326
Figure 6.5b Cannon Street Station area, mean pedestrian flow rates (weekday / 12:00 to 18:00) 327
Figure 6.6a London Bridge Station area, key pedestrian routes around the terminus structures and the allocation of gates for movement observation 328
Figure 6.6b London Bridge Station area, mean pedestrian flow rates (weekday / 12:00 to 18:00) 329
Figure 6.7a Waterloo Station area, key pedestrian routes around the terminus structures and the allocation of gates for movement observation 330
Figure 6.7b Waterloo Station area, mean pedestrian flow rates (weekday / 12:00 to 18:00) 331
Figure 6.8a Charing Cross Station area, key pedestrian routes around the terminus structures and the allocation of gates for movement observation 332
Figure 6.8b Charing Cross Station area, mean pedestrian flow rates (weekday / 12:00 to 18:00) 333
Figure 6.9a Victoria Station area, key pedestrian routes around the terminus structures and the allocation of gates for movement observation 334
Figure 6.9b Victoria Station area, mean pedestrian flow rates (weekday / 12:00 to 18:00) 335
Figure 6.10a Paddington Station area, key pedestrian routes around the terminus structures and the allocation of gates for movement observation 336
Figure 6.10b Paddington Station area, mean pedestrian flow rates (weekday / 12:00 to 18:00) 337
Figure 6.11a Marylebone Station area, key pedestrian routes around the terminus structures and the allocation of gates for movement observation
Figure 6.11b Marylebone Station area, mean pedestrian flow rates (weekday / 12:00 to 18:00)

Tables:
Table 6.1 Stepwise regression analysis: global integration values and time-periodwise movement variables
Table 6.2 Stepwise regression analysis: local integration values and time-periodwise movement variables
Table 6.3 Stepwise regression analysis: connectivity values and time-periodwise movement variables
Table 6.4 Stepwise regression analysis: mean movement rates (2-4pm) and three spatial variables

Plates:
Plate 6.1 Regression analysis
Plate 6.2 Scattergrams of mean movement rates (2-4 pm) and the two spatial variables in equation
Plate 6.3 Euston Station area, regression analysis of local integration and movement
Plate 6.4 King’s Cross Station area, regression analysis of local integration and movement
Plate 6.5 Liverpool Street Station area, regression analysis of local integration and movement
Plate 6.6 Fenchurch Street Station area, regression analysis of local integration and movement
Plate 6.7 Cannon Street Station area, regression analysis of local integration and movement
Plate 6.8 London Bridge Station area, regression analysis of local integration and movement
Plate 6.9 Waterloo Station area, regression analysis of local integration and movement
Plate 6.10 Charing Cross Station area, regression analysis of local integration and movement
Plate 6.11 Victoria Station area, regression analysis of local integration and movement
Plate 6.12 Paddington Station area, regression analysis of local integration and movement
Plate 6.13 Marylebone Station area, regression analysis of local integration and movement
CHAPTER SEVEN
The spatial process of creating places out of nodes in railway terminus areas

Tables:
Table 7.1 Spatial embedding values and internal pedestrian space use data of London’s railway termini 343
Table 7.2 Stepwise regression analysis, percentage of non-passenger inside London’s railway termini and spatial embedding variables 344
Table 7.3 Stepwise regression analysis, percentage of retail and catering spaces inside London’s railway termini and spatial embedding variables 344

Plates:
Plate 7.1 Regression analysis, percentage of non-passenger inside London’s railway termini and their local embedding variables 345
Plate 7.2 Regression analysis, percentage of retail and catering spaces inside the railway termini and local spatial embedding variables 345
Plate 7.3 The ideal model of node-place synergy in railway terminus area 347
Plate 7.4 Diagram of Liverpool Street Station area redevelopment strategy 349
Plate 7.5 Diagram of Victoria Station area redevelopment strategy 351
Plate 7.6 Diagram of Euston Station area redevelopment strategy 353
Plate 7.7 Diagram of Charing Cross Station area redevelopment strategy 355
Plate 7.8 Diagram of Cannon Street Station area redevelopment strategy 355
Plate 7.9 Diagram of Fenchurch Street Station area redevelopment strategy 355
Plate 7.10 Diagram of London Bridge Station area redevelopment strategy 357
Plate 7.11 Diagram of Waterloo Station area redevelopment strategy 357
Plate 7.12 Diagram of Paddington Station area redevelopment strategy 359
Plate 7.13 Diagram of Marylebone Station area redevelopment strategy 360
Plate 7.14 Diagram of King’s Cross Station area redevelopment strategy 361

APPENDIX A
A brief investigation on the current urban condition of eleven railway terminus areas in central London

Plates:
Plate A.1 Cannon Street Station area: current urban condition 389
Plate A.2 Fenchurch Street Station area: current urban condition 390
Plate A.3 Liverpool Street Station area: current urban condition 391
Plate A.4 Euston Station area: current urban condition 392
Plate A.5 Marylebone Station area: current urban condition 393
Plate A.6 Charing Cross Station area: current urban condition 394
APPENDIX B
Types of railway stations

Plates:
Plate B.1 The terminus
Plate B.2 The route spanning track station
Plate B.3 The route lineside station
Plate B.4 The route lineside station with branch
Plate B.5 The route station with island platform
Plate B.6 The combined through terminal and branch line terminal

APPENDIX C
Archive of railway station area redevelopment projects

Table:
Table C.1 List of 90 surveyed railway station area redevelopment projects

Plates:
Plate C.1a Euralille, Lille, France
Plate C.1b Euralille, Lille, France: ground level plan
Plate C.1c Euralille, Lille, France: project components
Plate C.1d Euralille, Lille, France: figure-ground close up
Plate C.1e Euralille, Lille, France: pedestrian quality
Plate C.1f Euralille, Lille, France: people movement sample record
Plate C.2 Amsterdam Zuidas, Amsterdam, The Netherlands
Plate C.3 Utrecht Zentrum, Utrecht, The Netherlands
Plate C.4 Stockholm City West, Stockholm, Sweden
Plate C.5 Basel Euroville, Basel, Switzerland
Plate C.6 Zentrum Zurich Nord, Zurich, Switzerland
Plate C.7 King’s Cross and St.Pancras, London, UK
APPENDIX D
Key station user statistic

Table:
Table D.1 Key Station User Statistics

APPENDIX E
Gate observation on pedestrian movement rates: Victoria and Euston Stations

Tables:
Table E.1 Victoria Station
Table E.2 Euston Station

Plates:
Plate E.1 Victoria Station, mean movement level of the morning and the evening peak periods (three minutes)
Plate E.2 Euston Station, mean movement level of the morning and the evening peak periods (three minutes)

APPENDIX F
Spatial data from the axial analysis of the modelling area of London's railway terminus areas

Table:
Table F.1 Spatial data from the axial analysis of the modelling area of London's railway terminus areas

APPENDIX G
Sectional gate count database

Tables:
Table G.1 Sectional gate count database: Euston Station
Table G.2 Sectional gate count database: Liverpool Street Station area
Table G.3 Sectional gate count database: Fenchurch Street Station area
Table G.4 Sectional gate count database: Cannon Street Station area
Table G.5 Sectional gate count database: London Bridge Station area
Table G.6 Sectional gate count database: Waterloo Station area
Table G.7 Sectional gate count database: Charing Cross Station area
Table G.8 Sectional gate count database: Victoria Station area
Table G.9 Sectional gate count database: Paddington Station area
Table G.10 Sectional gate count database: Marylebone Station area

APPENDIX H
Database table for movement and spatial variables of eleven London’s railway termini

Table:
Table H.1 Database on movement and spatial variables of eleven London’s mainline railway terminus areas

APPENDIX I
The allocation of sub-areas around London’s railway terminus areas for the statistical analysis

Plates:
Plate I.1 King’s Cross and St.Pancras Station area
Plate I.2 Euston Station area
Plate I.3 Liverpool Street station area
Plate I.4 Fenchurch Street station area
Plate I.5 Cannon Street Station area
Plate I.6 London Bridge Station area
Plate I.7 Waterloo Station area
Plate I.8 Charing Cross Station area
Plate I.9 Victoria Station area
Plate I.10 Paddington Station area
Plate I.11 Marylebone Station area
ACKNOWLEDGEMENT

I can only say that I enjoyed most parts of the long process of my PhD thesis. I wish to thank specially my supervisor Professor Bill Hillier whom I have learned much along the way, from start to finish, through his wisdom, guidance and support. I am also grateful to Alan Penn, my second supervisor, for his sharp criticism and technical support.

It is my pleasure and privileged to be a part of an active academic environment of the Advanced Architectural Studies programme at the Bartlett School of Graduate Studies, University College London, contributed by the 1997's MSc students, all PhD colleagues, including researchers and staffs at the Space Syntax Limited. Special thanks go to Dr.Beatriz Campos and Dr.Laura Vaughan for their advises and tutorials. I would like to acknowledge the help of Pornpimon Piumpongsuk and Prawat Uahpat. for lending their hands on my fieldwork. I am also very much grateful to all my editors: Mr.Tom Mcmanamon, Montira Horayangura, Joel Kennedy, and especially Dr.Theodore Michell who helped perfect my English writing with great patience.

My thesis would never be grounded without valuable information and kind co-operation from several personnels at the Railtrack. I would like to thank Mr.Clive Brandon, Mr.Richard Goldings, Mr.John Fellows, Mr.Chris Paxman, and the station managers at all eleven London's railway termini for their knowledge and insights on the topic.

I derived much of my emotional support from my Thai colleagues who, on the same boat a long way from home, had been through together good and bad times during these long years in London. On the top of the list is Pranom Tansukanun, my birthday mate, who always lended her support in almost everything. I value her true friendship and owe much to her good nature. Special thank goes to Apiradee Kasemsook who never said no to all my peculiar requests at unusual times and to answer all my questions regarding everything. I also very much enjoyed accompanies of Sant Suwatcharapinun and Nuttinee Karnchanaporn, and all of my housemates: Komson Theerapabwongse, Denphong Duangpatra, Makakrai Sutadarat, Chokeanand Bussracumpakorn, Sanaphorn Srisoonthornsrisoon, and Warisa Liangchaikul. Without them, my time in London would be much less enjoyable.
My research would not be possible without a sponsorship from Chulalongkorn University. I would like to specially thank Dr. Vira Sajakul, Dean of the Faculty of Architecture, Dr. Nopanant Tapananont, Head of the Department of Urban and Regional Planning, and Professor Vimol Sidsidhi Horayangura for their supports and goodwill. For taking good care of everything from administrative to personal issues since the first until the last day in London, I express my sincere gratitude to all personnel at the respectable Office of Educational Affairs, and the Royal Thai Embassy in London.

Most importantly, I dedicate this thesis to my family, especially to my mother and father. I would have never made everything possible without their unconditional love, support and great patience. I deeply value a true love and concern of my husband, Anusorn Paksukcharern, who always inspires me to be a better person. Special regards go to Jikko, Ando, Gaston, and Ngao, all my pets who have been patiently waiting at home and keeping me sane throughout.