UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Memory for events and their spatial context: models and experiments

Burgess, N; Becker, S; King, JA; O'Keefe, J; (2001) Memory for events and their spatial context: models and experiments. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES , 356 (1413) 1493 - 1503.

Full text not available from this repository.

Abstract

The computational role of the hippocampus in memory has been characterized as: (i) an index to disparate neocortical storage sites; (ii) a time-limited store supporting neocortical long-term memory; and (iii) a content-addressable associative memory. These ideas are reviewed and related to several general aspects of episodic memory, including the differences between episodic, recognition and semantic memory, and whether hippocampal lesions differentially affect recent or remote memories. Some outstanding questions remain, such as: what characterizes episodic retrieval as opposed to other forms of read-out from memory; what triggers the. storage of an event memory; and what are the neural mechanisms involved? To address these questions a neural-level model of the medial temporal and parietal roles in retrieval of the spatial context of an event is presented. This model combines the idea that retrieval of the rich context of real-life events is a central characteristic of episodic memory, and the idea that medial temporal allocentric representations are used in long-term storage while parietal egocentric representations are used to imagine, manipulate and re-experience the products of retrieval. The model is consistent with the known neural representation of spatial information in the brain, and provides an explanation for the involvement of Papez's circuit in both the representation of heading direction and in the recollection of episodic information. Two experiments relating to the model are briefly described. A functional neuroimaging study of memory for the spatial context of life-like events in virtual reality provides support for the model's functional localization. A neuropsychological experiment suggests that the hippocampus does store an allocentric representation of spatial locations.

Type: Article
Title: Memory for events and their spatial context: models and experiments
Location: ROYAL SOC, LONDON, ENGLAND
Keywords: memory, space, episodic, model, hippocampus, IMPAIRED RECOGNITION MEMORY, EPISODIC MEMORY, HIPPOCAMPAL FUNCTION, TEMPORAL-LOBE, RETROGRADE-AMNESIA, ASSOCIATIVE MEMORY, PARIETAL NEURONS, SEMANTIC MEMORY, NETWORK MODEL, PLACE FIELDS
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences > Clinical, Edu and Hlth Psychology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Experimental Epilepsy
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > The Sainsbury Wellcome Centre
URI: http://discovery.ucl.ac.uk/id/eprint/4144
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item