UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

hcp metal nanoclusters with hexagonal A-A bilayer stacking stabilized by enhanced covalent bonding

Li, SF; Li, HS; Xue, XL; Jia, Y; Guo, ZX; Zhang, ZY; Gong, XG; (2010) hcp metal nanoclusters with hexagonal A-A bilayer stacking stabilized by enhanced covalent bonding. PHYS REV B , 82 (3) , Article 035443. 10.1103/PhysRevB.82.035443.

Full text not available from this repository.

Abstract

First-principles total energy calculations within density functional theory have been performed to study the geometric and electronic structures of Run nanoclusters of varying size n (14 <= n <= 42). Strikingly, for the size range of n = 14 to 38, the clusters always prefer a hexagonal bilayer structure with A-A stacking, rather than some of the more closely packed forms, or bilayer with A-B stacking. Such an intriguing "molecular double-wheel" form is stabilized by substantially enhanced interlayer covalent bonding associated with strong s-d hybridization. Similar A-A stacking is also observed in the ground states or low-lying isomers of the clusters composed of other hcp elements, such as Os, Tc, Re, and Co. Note that these "molecular double-wheels" show enhanced chemical activity toward H2O splitting relative to their bulk counterpart, implying its potential applications as nanocatalysts.

Type:Article
Title:hcp metal nanoclusters with hexagonal A-A bilayer stacking stabilized by enhanced covalent bonding
DOI:10.1103/PhysRevB.82.035443
Keywords:TOTAL-ENERGY CALCULATIONS, AUGMENTED-WAVE METHOD, ELASTIC BAND METHOD, SADDLE-POINTS, BASIS-SET, ADSORPTION, SURFACES, CLUSTERS, WATER, DISSOCIATION
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Chemistry

Archive Staff Only: edit this record