Observation of Diffractive J/ψ Production at the Fermilab Tevatron

241802-1 0031-9007/01/87(24)/241802(6)$15.00 © 2001 The American Physical Society 241802-1

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439
3 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
4 Brandeis University, Waltham, Massachusetts 02254
5 University of California at Davis, Davis, California 95616
6 University of California at Los Angeles, Los Angeles, California 90024
7 Instituto de Física de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
8 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
9 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
10 Duke University, Durham, North Carolina 27708
11 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
12 University of Florida, Gainesville, Florida 32611
13 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
14 University of Geneva, CH-1211 Geneva 4, Switzerland
15 Glasgow University, Glasgow G12 8QQ, United Kingdom
16 Harvard University, Cambridge, Massachusetts 02138
17 Hiroshima University, Higashi-Hiroshima 724, Japan
18 University of Illinois, Urbana, Illinois 61801
19 The Johns Hopkins University, Baltimore, Maryland 21218
20 Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
21 Center for High Energy Physics, Kyungpook National University, Taegu 702-701, Korea; and Sungkyunkwan University, Suwon 440-746, Korea
22 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan
23 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720
24 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
25 University of Michigan, Ann Arbor, Michigan 48109
26 Michigan State University, East Lansing, Michigan 48824
27 University of New Mexico, Albuquerque, New Mexico 87131
28 The Ohio State University, Columbus, Ohio 43210
29 Osaka City University, Osaka 588, Japan
30 University of Oxford, Oxford OX1 3RH, United Kingdom
31 Università di Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
32 University of Pennsylvania, Philadelphia, Pennsylvania 19104
33 Istituto Nazionale di Fisica Nucleare, University and Scuola Normale Superiore of Pisa, I-56100 Pisa, Italy
34 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
35 Purdue University, West Lafayette, Indiana 47907
36 University of Rochester, Rochester, New York 14627
37 Rockefeller University, New York, New York 10021
38 Rutgers University, Piscataway, New Jersey 08855
39 Texas A&M University, College Station, Texas 77843
40 Texas Tech University, Lubbock, Texas 79409
41 Institute of Particle Physics, University of Toronto, Toronto, Canada M5S 1A7
42 Istituto Nazionale di Fisica Nucleare, University of Trieste, Udine, Italy
43 University of Tsukuba, Tsukuba, Ibaraki 305, Japan
We report the first observation of diffractive $J/\psi(\rightarrow \mu^+\mu^-)$ production in $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV. Diffractive events are identified by their rapidity gap signature. In a sample of events with two muons of transverse momentum $p_T > 2$ GeV/c within the pseudorapidity region $|\eta| < 1.0$, the ratio of diffractive to total J/ψ production rates is found to be $R_{J/\psi} = [1.45 \pm 0.25]\%$. The ratio $R_{J/\psi}(x)$ is presented as a function of x-Bjorken. By combining it with our previously measured corresponding ratio $R_{J/\psi}(x)$ for diffractive dijet production, we extract a value of 0.59 ± 0.15 for the gluon fraction of the diffractive structure function of the proton.

DOI: 10.1103/PhysRevLett.87.241802
B-hadron decays, and (c) background from processes for which the dimuon invariant mass falls accidentally in the J/ψ signal mass window [9]. The fraction of background events in the signal region is evaluated by fitting the dimuon mass distribution with a sum of a Gaussian and a linear function. The fit yields a background fraction of \((6.5 \pm 0.1)\% \) within the signal region.

The fraction of J/ψ's from B-hadron decays can be determined by fitting the proper decay length distribution, $c\tau$, using the appropriate function for each of the three dimuon components described above. However, because we do not fully reconstruct B decays, we use an approximation to $c\tau$ described in [9] and referred to as pseudo-$c\tau$. In the signal region, the fraction of background events is fixed at the value of 0.065, obtained from the dimuon mass fit, and the pseudo-$c\tau$ distribution is fitted using for the background a parametrization derived from the sidebands and appropriate parametrizations for the prompt and B decay dimuon components [8,9]. The pseudo-$c\tau$ distribution for the signal region is shown in Fig. 1b with the fit result superimposed. The fraction of J/ψ mesons from B-hadron decays obtained from the fit is \((16.8 \pm 0.4)\% \). The vertical line at 100 μm separates two regions: a “long-lived” region dominated by B decays and a “short-lived” region mostly due to prompt J/ψ mesons. The short-lived region contains 15,824 events, which are used in the analysis below. By numerically integrating the fitted B decay component in this region, the B-hadron decay contamination is found to be 3.3%.

As in our previous rapidity gap studies [3–5], the diffractive signal is evaluated by considering the number of BBC hits, N_{BBC}, versus the number of the adjacent forward calorimeter towers with energy above 1.5 GeV, N_{CAL}. Figure 2a shows the correlation between N_{BBC} and N_{CAL}. The multiplicity in this figure is for the side of the detector with the lower BBC hit multiplicity. The (0,0) bin, $N_{\text{BBC}} = N_{\text{CAL}}$, contains 92 events. The excess of events in this bin is attributed to diffractive production. The nondiffractive (ND) content of the (0,0) bin is evaluated from the diagonal of Fig. 2a with $N_{\text{BBC}} = N_{\text{CAL}}$, shown in Fig. 2b. The non-J/ψ background in each bin of

\[\frac{N_{\text{events}}}{N_{\text{TOT}}} \]

is subtracted from the number of events in that bin, yielding 67.5 events for the (0,0) bin. An extrapolation to bin (0,1) of a linear fit to the data of bins (0,1) to (1,2) yields 87.4 \pm 9.7 J/ψ events in the (0,0) bin. The events in the (0,0) bin will be referred to as “gap” events. Figures 2c and 2d show the J/ψ transverse momentum and pseudorapidity distribution, respectively, for the gap and total event samples. The similarity in shape of the two E_T distributions in Fig. 2c implies that the diffractive structure function is not very different from the nondiffractive. In Fig. 2d the sign of the J/ψ pseudorapidity for events with a gap at positive η is reversed, so that the gap appears always on the left. The η distributions are confined within $|\eta| < 1.0$ due to the muon chamber acceptance.

The number of diffractive events in the (0,0) bin must be corrected for the efficiency of requiring a single reconstructed primary vertex, ε_{TOT}, as well as for random BBC and forward calorimeter occupancy. The single-vertex requirement, which is used to reject events due to multiple interactions, also rejects single interaction events with extra vertices due to track reconstruction ambiguities. By removing the single-vertex requirement, the number of 67.5 diffractive gap events increases to 79.5 (after the ND background subtraction), resulting in $\varepsilon_{\text{TOT}} = 0.85$. For the total event sample, the efficiency of the single-vertex requirement, ε_{TOT}, was evaluated by comparing the ratio of single vertex to all events with the ratio expected from

\[\frac{N_{\text{events}}}{N_{\text{TOT}}} \]

This plot, estimated by fitting the dimuon mass distribution to the sum of a Gaussian and a constant function, was subtracted from the number of J/ψ candidates prior to plotting, yielding 87.4 \pm 9.7 J/ψ events in the (0,0) bin. The similarity in shape of the two E_T distributions in Fig. 2c implies that the diffractive structure function is not very different from the nondiffractive. In Fig. 2d the sign of the J/ψ pseudorapidity for events with a gap at positive η is reversed, so that the gap appears always on the left. The η distributions are confined within $|\eta| < 1.0$ due to the muon chamber acceptance.
the instantaneous luminosity. This comparison yielded $\epsilon_{1\text{vtx}} = 0.56 \pm 0.04$. This value is lower than $\epsilon_{1\text{vtx}}$ due to the higher average track multiplicity. Finally, from a study of a sample of events with no reconstructed primary vertex collected in random beam-beam crossings, the combined BBC and forward calorimeter occupancy was measured to be 0.20 ± 0.06.

After applying the above corrections, we obtain a diffractive to total J/ψ production ratio of $R_{J/\psi}^{d} = (0.42 \pm 0.07)\%$. This ratio is then corrected for the rapidity gap acceptance, e^{gap}, defined as the ratio of events in bin (0, 0) to the total number of diffractive events satisfying the same J/ψ requirements and produced within a specified range of ξ, where ξ is the fractional momentum loss of the leading (anti)proton. The gap acceptance for $\xi < 0.1$ was calculated using the POMPYT Monte Carlo generator [10] followed by a detector simulation. For a Pomeron structure function of the form $B \cdot f(\beta) = 1/\beta$ [6], where β is the fraction of the momentum of the Pomeron carried by a parton, e^{gap} was found to be 0.29.

The sensitivity of the POMPYT gap acceptance prediction on input Pomeron structure function was examined by using a flat gluon structure, which yielded $e^{gap} = 0.30$. Dividing $R_{J/\psi}^{d}$ by $e^{gap} = 0.29$ yields a diffractive to total production ratio of $R_{J/\psi} = (1.45 \pm 0.25)\%$.

The ratio $R_{J/\psi}$ is larger than the corresponding ratio for diffractive b-quark production, $R_{b} = (0.62 \pm 0.25)\%$ [5], by a factor of 2.34 ± 0.35. As both J/ψ and b-quark production are mainly sensitive to the gluon content of the Pomeron, we examine whether the difference in the two ratios could be attributed to the different average x_{bj} values of the two measurements. Given the $x_{bj}^{0.45}$ dependence of the diffractive structure function measured in dijet production [6], the double ratio $R_{J/\psi}^{d} / R_{b} = (x_{bj}^{J/\psi} / x_{bj}^{b})^{0.45}$ is expected to be equal to $(x_{bj}^{J/\psi} / x_{bj}^{b})$. Since in these measurements we consider only central J/ψ (see Fig. 2d) or b-quark production, the ratio $x_{bj}^{J/\psi} / x_{bj}^{b}$ is approximately proportional to the ratio of the corresponding average p_T value for each process, which is $= 6 \text{ GeV/c}$ for the J/ψ (see Fig. 2c) and $= 36 \text{ GeV/c}$ for the b-quark (about 3 times the average p_T of the b-decay electron [5]). The expected value for $R_{J/\psi}^{d} / R_{b}$ is then $= (6/36)^{0.45} = 2.2$, in agreement with the measured value of 2.34 ± 0.35. Thus, the observed difference between the measured b-quark and J/ψ diffractive fractions appears to be due to the difference in the x_{bj} values probed in the respective cases.

For a direct study of the diffractive structure function, we restricted our analysis to events in which at least one jet was reconstructed. A jet is defined as a cluster of calorimeter towers within a cone size of $\Delta R = (\Delta \eta)^2 + (\Delta \phi)^2 = 0.7$ with a seed tower of $E_T > 1 \text{ GeV}$. Since our diffractive J/ψ events have a rapidity gap in the region $2.4 \leq |\eta| \leq 5.9$, the core of the reconstructed jet for both diffractive and nondiffractive events is restricted to the region $|\eta| < 1.7$. The number of events passing this requirement is 8732.

Figure 3 shows distributions for the J/ψ + jet event sample: (a) is the diagonal N_{CAL},N_{BBC} distribution, equivalent to that of Fig. 2b, (b) the corrected $\xi_{p,\bar{p}}$ distribution for the (anti)proton on the side of the gap, evaluated using calorimeter and BBC information in a procedure described in Ref. [11], (c) the J/ψ transverse momentum, and (d) the azimuthal angle difference, $\phi = |\phi_{J/\psi} - \phi_{\text{jet}}|$, between the J/ψ and the highest E_T jet.

The x_{bj} of the parton in the (anti)proton participating in J/ψ production is evaluated using the equation $x_{bj} = p_{T_j}(\xi^{+\eta_{J/\psi}} + \xi^{-\eta_{J/\psi}})/\sqrt{s}$, where the + (–) sign stands for p (\bar{p}). In leading order QCD calculations, the ratio of diffractive to total production rates is equal to the ratio of the corresponding structure functions. For J/ψ production, the ratio $R_{J/\psi}(x)$ per unit ξ was evaluated for the events in the region $0.01 < \xi < 0.03$ (see Fig. 3b) and is plotted in Fig. 4 along with the same ratio for dijet production, $R_{jj}(x)$, obtained from Ref. [6]. The structure function relevant to dijet production is $F_{jj}(x) = g(x) + 4q(x)$ [6], where $g(x)$ and $q(x)$ are the gluon and quark densities in the proton and x is a color factor. Thus, $R_{jj}(x) = g(x)/q(x)$. For J/ψ production, which is dominated by gg interactions, $R_{J/\psi}(x) = g(x)/g(x)$. The ratio of $R_{jj}(x)$ to $R_{J/\psi}(x)$ is then given by

![Graphical representation of the data](image-url)
structure function of the (anti)proton is found to be calculated from the proton GRV98LO parton distribution functions [12], the gluon fraction of the diffractive parton densities. Evaluating this ratio of ratios by integrating the x_{bj} distributions for R_{jj} and $R_{J/\psi}$ in the region $0.004 \leq x \leq 0.01$ (kinematic boundaries for full acceptance) yields $[R_{jj}(x)/R_{J/\psi}(x)]_{\exp} = 1.17 \pm 0.27$ (stat). Using this value in Eq. (1) and the ratio of $q(x)/g(x) = 0.274$ at $x = 0.0063$ and $Q = 6$ GeV calculated from the proton GRV98LO parton distribution functions [12], the gluon fraction of the diffractive structure function of the (anti)proton is found to be $f_g^D = 0.59 \pm 0.14$ (stat) ± 0.06 (syst), where the systematic uncertainty includes in quadrature the uncertainties of all correction factors. This value is consistent with the gluon fraction of 0.54 ± 0.15 obtained by combining the results of diffractive W, dijet, and b-quark production [5]. This result shows that, despite the severe breakdown of diffractive QCD factorization between HERA and the Tevatron [3–6], factorization seems to hold between different diffractive processes at the same center of mass energy at the Tevatron.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science, Sports and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fuer Bildung und Forschung, Germany; the Korea Science and Engineering Foundation (KoSEF); the Korea Research Foundation; and the Comision Interministerial de Ciencia y Tecnologia, Spain.

*Present address: Northwestern University, Evanston, IL 60208.
*Present address: Carnegie Mellon University, Pittsburgh, PA 15213.

[1] We use rapidity and pseudorapidity, η, interchangeably; $\eta = -\ln(\tan(\frac{\theta}{2}))$, where θ is the polar angle of a particle with respect to the proton beam direction. The azimuthal angle is denoted by ϕ, and transverse energy is defined as $E_T = E \sin \theta$.
