UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Quadrangularity in Tournaments

Lundgren, JR; Severini, S; Stewart, DJ; (2004) Quadrangularity in Tournaments.

Full text not available from this repository.


The pattern of a matrix M is a (0,1)-matrix which replaces all non-zero entries of M with a 1. There are several contexts in which studying the patterns of orthogonal matrices can be useful. One necessary condition for a matrix to be orthogonal is a property known as combinatorial orthogonality. If the adjacency matrix of a directed graph forms a pattern of a combinatorially orthogonal matrix, we say the digraph is quadrangular. We look at the quadrangular property in tournaments and regular tournaments.

Title:Quadrangularity in Tournaments
Additional information:13 pages
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record