UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Entanglement and area law with a fractal boundary in a topologically ordered phase

Hamma, A; Lidar, DA; Severini, S; (2010) Entanglement and area law with a fractal boundary in a topologically ordered phase. PHYS REV A , 81 (1) , Article 010102. 10.1103/PhysRevA.81.010102.

Full text not available from this repository.

Abstract

Quantum systems with short-range interactions are known to respect an area law for the entanglement entropy: The von Neumann entropy S associated to a bipartition scales with the boundary p between the two parts. Here we study the case in which the boundary is a fractal. We consider the topologically ordered phase of the toric code with a magnetic field. When the field vanishes it is possible to analytically compute the entanglement entropy for both regular and fractal bipartitions (A, B) of the system and this yields an upper bound for the entire topological phase. When the A-B boundary is regular we have S/p = 1 for large p. When the boundary is a fractal of the Hausdorff dimension D, we show that the entanglement between the two parts scales as S/p = gamma <= 1/D, and gamma depends on the fractal considered.

Type:Article
Title:Entanglement and area law with a fractal boundary in a topologically ordered phase
DOI:10.1103/PhysRevA.81.010102
Keywords:SYSTEMS
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record