UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Quantum Logic Circuits and Optical Signal Generation for a Three-Qubit, Optically Controlled, Solid-State Quantum Computer

Del Duce, A; Bayvel, P; (2009) Quantum Logic Circuits and Optical Signal Generation for a Three-Qubit, Optically Controlled, Solid-State Quantum Computer. IEEE J SEL TOP QUANT , 15 (6) 1694 - 1703. 10.1109/JSTQE.2009.2024326.

Full text not available from this repository.

Abstract

We analyze the preparation of an experimental demonstration for a three-qubit, optically controlled, solid-state quantum computational system. First, using a genetic programming approach, we design quantum logic circuits, specifically tailored for our computational model, which implement a three-qubit refined Deutsch-Jozsa algorithm. Aiming at achieving the shortest possible computational time, we compare two design strategies based on exploiting two different sets of entangling gates. The first set comprises fast approximations of controlled-phase gates, while in the second case, we exploit arbitrary entangling gates with gate computational times shorter than those of the first set. Then, considering some recently proposed material implementations of this quantum computational system, we discuss the generation of the near-midinfrared, multiwavelength and picosecond optical pulse sequences necessary for controlling the presented quantum logic circuits. Finally, we analyze potential sources of errors and assess the impact of random fluctuations of the parameters controlling the entangling gates on the overall quantum computational system performance.

Type:Article
Title:Quantum Logic Circuits and Optical Signal Generation for a Three-Qubit, Optically Controlled, Solid-State Quantum Computer
DOI:10.1109/JSTQE.2009.2024326
Keywords:Near-midinfrared picosecond pulse generation, quantum circuit design, refined Deutsch-Jozsa algorithm, solid-state quantum computation, DEUTSCH-JOZSA ALGORITHM, CASCADE LASERS, SILICON, COMPUTATION, GATES, PULSES, IMPLEMENTATION, OPERATION, COMMUNICATION, DECOHERENCE
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Electronic and Electrical Engineering

Archive Staff Only: edit this record