UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Mechanisms for the shuttling of plasma non-transferrin-bound iron (NTBI) onto deferoxamine by deferiprone

Evans, P; Kayyali, R; Hider, RC; Eccleston, J; Porter, JB; (2010) Mechanisms for the shuttling of plasma non-transferrin-bound iron (NTBI) onto deferoxamine by deferiprone. TRANSL RES , 156 (2) 55 - 67. 10.1016/j.trsl.2010.05.002.

Full text not available from this repository.

Abstract

In iron overload conditions, plasma contains non-transferrin bound iron species, collectively referred to as plasma NTBI. These include iron citrate species, some of which are protein bound. Because NTBI is taken into tissues susceptible to iron loading, its removal by chelation is desirable but only partial using standard deferoxamine (DFO) therapy. Speciation plots suggest that, at clinically achievable concentrations, deferiprone (DFP) will shuttle iron onto DFO to form feroxamine (FO), but whether NTBI chelation by DFO is enhanced to therapeutically relevant rates by DFP is unknown. As FO is highly stable, kinetic measurements of FO formation by high-performance liquid chromatography or by stopped-flow spectrometry are achievable. In serum from thalassemia major patients supplemented with 10 mu M DFO, FO formation paralleled NTBI removal but never exceeded 50% of potentially available NTBI; approximately one third of NTBI was chelated rapidly but only 15% of the remainder at 20 h. Addition of DFP increased the magnitude of the slower component, with increments in FO formation equivalent to complete NTBI removal by 8 h. This shuttling effect was absent in serum from healthy control subjects, indicating no transferrin iron removal. Studies with iron citrate solutions also showed biphasic chelation by DFO, the slow component being accelerated by the addition of DFP, with optimal enhancement at 30 mu M. Physiological concentrations of albumin also enhanced DFO chelation from iron citrate, and the co-addition of DFP further accelerated this effect. We conclude that at clinically relevant concentrations, DFP enhances plasma NTBI chelation with DFO by rapidly accessing and shuttling NTBI fractions that are otherwise only slowly available to DFO. (Translational Research 2010;156:55-67)

Type: Article
Title: Mechanisms for the shuttling of plasma non-transferrin-bound iron (NTBI) onto deferoxamine by deferiprone
DOI: 10.1016/j.trsl.2010.05.002
Keywords: CHELATION-THERAPY, THALASSEMIA MAJOR, BETA-THALASSEMIA, MAGNETIC-RESONANCE, DESFERRIOXAMINE, SERUM, OVERLOAD, REMOVAL, TRIAL, PHARMACOKINETICS
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Cancer Institute
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Cancer Institute > Research Department of Haematology
URI: http://discovery.ucl.ac.uk/id/eprint/354556
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item