The role of the ventrolateral frontal cortex in inhibitory oculomotor control

Tim Hodgson,1 Marcia Chamberlain,2 Benjamin Parris,1 Martin James,3 Nicholas Gutowski,3 Masud Husain4 and Christopher Kennard2

1Exeter Centre for Cognitive Neuroscience, School of Psychology, University of Exeter, Washington Singer Laboratories, Prince of Wales Road, Exeter EX4 4QG, 2Division of Neuroscience, Imperial College School of Science Technology and Medicine, Faculty of Medicine, Charing Cross Campus, 10th Floor East Wing, St Dunstans Road, London W6 8RP, 3Royal Devon and Exeter Hospital, Barrack Road, Exeter EX2 5DW and 4Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London WC1N 3AR, UK

Correspondence to: Tim Hodgson, Exeter Centre for Cognitive Neuroscience, School of Psychology, University of Exeter, Washington Singer Laboratories, Prince of Wales Road, Exeter EX4 4QG, UK
E-mail: t.l.hodgson@exeter.ac.uk

It has been proposed that the inferior/ventrolateral frontal cortex plays a critical role in the inhibitory control of action during cognitive tasks. However, the contribution of this region to the control of eye movements has not been clearly established. Here, we describe the performance of a group of 23 frontal lobe damaged patients in an oculomotor rule switching task for which the association between a centrally presented visual cue and the direction of a saccade could change from trial to trial. A subset of 16 patients also completed the standard antisaccade task. Ventrolateral damage was found to be a significant predictor of errors in both tasks. Analysis of the rate at which patients corrected errors in the rule switching task also revealed an important dissociation between left and right hemisphere damaged patients. Whilst patients with left ventrolateral damage usually corrected response errors with secondary saccades, those with right hemisphere lesions often failed to do so. The results suggest that the inferior frontal cortex forms part of a wider frontal network mediating inhibitory control over stimulus elicited eye movements. The critical role played by the right ventrolateral region in cognitive tasks may arise due to an additional functional specialization for the monitoring and updating of task rules.

Keywords: executive control; eye tracking; antisaccades; task switching; frontal lobe

Abbreviations: DLPFC = dorsolateral prefrontal cortex; FEF = frontal eye fields; VLF = ventrolateral frontal

Introduction

The ability to inhibit stimulus elicited action is a faculty that has long been associated with the frontal lobes of the cerebral cortex (e.g. Holmes, 1938). Perhaps the most straightforward test of volitional inhibitory control in neurological patients is the antisaccade task, in which a saccadic eye movement has to be executed in the direction opposite to the location of a peripheral stimulus onset (Hallett and Adams, 1980; Leigh and Kennard, 2004). Yet even in the case of this relatively simple test, for which the neural control centres are well-charted in animal models (Munoz and Everling, 2004), there is considerable disagreement between studies concerning the critical frontal lesion site that leads to an impairment in humans. Research in the domain of oculomotor control also rests uncomfortably with the wider literature on response inhibition in cognitive tasks which posits a role for the inferior frontal region in inhibitory control processes (see Aron et al., 2004a, b for review).

The performance of frontal lobe damaged patients in the antisaccade task was first studied by Guitton et al. (1985). These authors contrasted performance of patients with frontal lobe lesions to those with temporal lobe damage. The frontal lobe group made a significantly increased number of errors in which the target stimulus was fixated. Yet even in the case of this relatively simple test, for which the neural control centres are well-charted in animal models (Munoz and Everling, 2004), there is considerable disagreement between studies concerning the critical frontal lesion site that leads to an impairment in humans. Research in the domain of oculomotor control also rests uncomfortably with the wider literature on response inhibition in cognitive tasks which posits a role for the inferior frontal region in inhibitory control processes (see Aron et al., 2004a, b for review).

The performance of frontal lobe damaged patients in the antisaccade task was first studied by Guitton et al. (1985). These authors contrasted performance of patients with frontal lobe lesions to those with temporal lobe damage. The frontal lobe group made a significantly increased number of errors in which the target stimulus was fixated. It was speculated that these patients had impaired volitional inhibitory control due to damage affecting the frontal eye fields (FEF). However, later studies suggested that it was the adjacent dorsolateral prefrontal cortex (DLPFC) which was the critical lesion site leading to an impairment...
(Pierrott-Deseilligny et al., 1991; Rivaud et al., 1994). Together with evidence from neurophysiological studies in monkeys, these patient studies implicate a role for the DLPFC region in the voluntary suppression of reflex saccades (Goldman-Rakic, 1987; Funahashi et al., 1989, 1993; Pierrot-Deseilligny et al., 2005).

Other evidence can be used to argue against a critical role for the DLPFC in the antisaccade task. Functional activation and transcranial magnetic stimulation studies have shown that in humans the FEF lies at the intersection of the superior frontal sulcus and the precentral sulcus, just anterior to the hand and face representation in the motor strip (Paus, 1996; Ro et al., 1999). One study which used this precise anatomical criterion found that patients with chronic FEF lesions made increased contralesional errors in the task (Machado and Rafal, 2004). The same report also describes two patients with lesions which appear to spare the FEF that performed antisaccades normally. Lesion reconstructions suggest that both these patients had relatively small lesions confined to the dorsal aspect of the lateral prefrontal surface (i.e. the DLPFC).

Another report that runs contrary to a critical role for the DLPFC in inhibitory oculomotor control is that of Paus et al. (1991). These authors used a different procedure in which patients viewed a series of pictures/abstract patterns presented at fixation whilst irrelevant stimuli appeared without warning to the left and right of fixation. Lesions were carefully plotted onto standardized templates and categorized according to whether they had dorsal, ventral or medial prefrontal damage. Comparisons between the groups revealed that it was the ventrolateral (rather than dorsolateral) frontal damaged group who made increased distractibility errors.

An important single case report which also implicates the ventrolateral region in inhibitory oculomotor control was described by Walker et al. (1998). These authors describe a patient with right ventrolateral frontal damage of a type that is common following middle cerebral artery (MCA) stroke (Finley et al., 2003; Naidich et al., 2003). The patient made close to 100% antisaccade errors, a deficit which had not resolved a year or more after his stroke. He was also found to be impaired on a number of other cognitive tasks, including tests of spatial working memory, problem solving and attentional set shifting. The lesion was confined almost entirely to the inferior frontal gyrus, including the ventral prefrontal region and anterior insula cortex, approximating to the homologue of Broca’s area in the right hemisphere. Although the authors’ discussion focused largely on the implications of the case for hypothesized modal (i.e. spatial versus object) processing dichotomies in prefrontal cortex (Goldman-Rakic, 1996), the lesion location and pattern of deficits are clearly also consistent with the proposed specialization of the inferior frontal region for response inhibition across a range of cognitive tasks (Garavan et al., 1999; Aron et al., 2003, 2004a, b; Swainson et al., 2003; Konishi et al., 1999).

One potential explanation for the inconsistencies in the literature on antisaccades and frontal lobe damage is the criterion used to select patients. Many studies have set out with the aim of testing existing neural models of oculomotor control derived from animal neurophysiological investigations. Patients have therefore been selected and classified into groups based on whether they have a lesion that is judged to include (or exclude) a particular structure implicated in existing models (e.g. Periott-Deseilligny et al., 1991; Rivaud et al., 1994; Machado and Rafal, 2004). Regions of maximal lesion overlap in these studies reflect patient selection criterion rather than the existence of a functionally critical ‘hot-spot’. The alternative is to use a more inclusive selection criterion in which all consenting neurological patients with frontal lobe damage are selected regardless of a priori assumptions concerning lesion regions of interest. Individuals can then be classified according to their behavioural performance—whether or not they show an impairment—and the statistical likelihood of a particular type of damage being associated with the functional deficit can be assessed.

Another concern is the relative lack of complexity of the antisaccade task compared to other tests of cognitive inhibitory control. It might be argued that other paradigms place much greater demands on cognitive control. Go/No-go, stop signal tasks (Logan, 1994; Aron et al., 2003), as well as task switching procedures such as the Wisconsin card sorting test (Konishi et al., 1999, 2002), require suppression of motor responding only on a subset of trials. Ventrolateral frontal cortex may only be engaged during tasks for which the demand to inhibit a response varies from trial to trial. Consistent with this explanation, a recent combined ERP/fMRI study suggests that the region is activated by the demand to switch into a response suppression mode, rather than mediating response inhibition per se (Swainson et al., 2003). It is possible therefore that the antisaccade task may be relatively insensitive to the consequences of ventrolateral frontal damage.

To examine these issues, we tested a randomly selected group of patients with various types of frontal lobe lesions using a ‘rule switching’ task in which saccades have to be executed based on changing cue-saccade mappings. This task tests the inhibitory control of saccades under conditions of intermittent rule conflict, as well as the ability to monitor and correct errors with secondary corrective saccades (Husain et al., 2003; Hodgson et al., 2004). Patients were first classified as being impaired/unimpaired in their performance of the task relative to a group of age-matched controls. The distribution and characteristics of lesions in both groups were then compared using the voxel-based analysis of lesions technique (Rorden and Karnath, 2004). Additional behavioural analysis was also carried out in which patients were grouped on the basis of lesion location (left and right ventrolateral/non-ventrolateral) rather than performance.
For control purposes we also tested a subset of the patient group on the conventional pro and antisaccade tasks.

Materials and methods
Experimental subjects

Rule switching task
Twenty-three patients (5 females) with lesions involving the frontal lobe participated in the rule switching task. All were recruited from neurology and neurosurgery services at Charing Cross Hospital, London, UK and the Royal Devon and Exeter Hospital, Exeter, Devon, UK (Table 1). Candidate patients for the study were those who had sustained isolated focal lesions (i.e. not multiple infarcts) that included the frontal lobe, who were not undergoing chemotherapy or suffering from comorbid neurological conditions such as dementia and with no history of psychiatric illness. All patients who took part in the study gave their informed consent and the research was approved by the Riverside Regional Ethical Committee and North and East Devon Local Research Ethics Committee. The mean age of the patient group was 54 years, ranging from 27 to 76 years (SD = 16.4). An age-matched control group of 21 individuals (6 females) was recruited from employees of Charing Cross Hospital and the University of Exeter. The mean age of the control group was 53 years, ranging from 25 to 78 years (SD = 18.6).

Eye movement recording
Eye movements were recorded using an EyeLink II system (SR Research Ltd), a video-based pupil tracker with head movement compensation system sampling at 250 Hz. Subjects were seated 60 cm in front of a 22 inch CRT computer display monitor. Pupil position was monitored via two miniature infrared CCD video cameras mounted on an adjustable headband. The head movement compensation system meant that no active restraint of head movements was required to obtain sufficiently accurate gaze position recordings. Eye movements were recorded and visualized off line, saccades were identified and artefacts removed using custom software programs developed within the LabVIEW visual programming environment (National Instruments Inc.).
Task and procedure

General
Three boxes, outlined in black on a dark grey coloured background, were presented in the centre and 9° to the left and right of the screen. Each box subtended 3° of visual angle. Following eye tracker set-up and calibration, participants were given verbal instructions and completed a short practice block of 10 experimental trials.

Rule switching task
Each trial was triggered to start when the subject had been continuously fixating the central location for a period >800 ms. A coloured circle (cue) was then presented in the central box. The colour of the cue (red/blue) instructed the subject whether to look left or right. The next fixation longer than 800 ms on either the left or the right box was taken as the subject’s response on that trial, such that an eye fixation of shorter duration could be made towards the alternate location before the subject made their final decision. Once the viewer had selected one of the boxes by fixating it for >800 ms, feedback was given to indicate if the choice was correct or incorrect in the form of a happy/sad face displayed within the selected box, accompanied by a high- or low-pitched tone. Subjects were made aware that the rule linking the colour of the cue and direction of saccade would reverse at several points during the test. Rule changes were indicated by unexpected errors following runs of between 9 and 13 correct response trials. Each subject completed two blocks of 100 trials, comprising a maximum of 16 possible rule reversals. They were instructed to perform the task as quickly and as accurately as possible and to respond on the basis of the rule they knew to be correct at that time, without anticipating the occurrence of a rule change (Fig. 1).

Pro/antisaccades
Each trial started with the presentation of a white spot (0.5° diameter) in the centre of the screen. After a period of 500 ms the spot was extinguished and simultaneously reappeared in either the left or the right response box. In prosaccade blocks, participants were instructed to fixate the target stimulus and in antisaccade blocks, they were asked to saccade to the location directly opposite to the target stimulus. Once either the left or right location had been fixated for a period longer than 800 ms feedback was given to indicate that a correct movement had been executed. Following a delay of a further 1500 ms the next trial commenced with the onset of the fixation stimulus. A total of 60 trials were presented in each block.

Lesion analysis
High resolution (1 × 1 × 1 mm³ voxel size), T1 weighted structural MRI scans were acquired using either the 1.5T Siemens scanner at Charing Cross Hospital or the 1.5T Phillips scanner at the Peninsula MR Research Centre, University of Exeter. Lesion regions of interest (ROI) were digitized directly from scan images using MRicro software (Chris Rorden, University of South Carolina). For patients for whom only clinical CT scans were available, ROIs were traced onto transverse view slices of a standard T1 MRI template from the CT scan films, taking care to correct the orientation of the transverse slicing of the template image to that of the CT scan, based upon anatomical landmarks visible in lowest slices of the CT scans (Damasio and Damasio, 1989). All lesion ROIs were then normalized into standardised MNI/Talairach coordinate space using SPM2 software using the cost function masking technique described elsewhere (Brett et al., 2001). Figure 2 presents all patients ROIs displayed on a standard 1 mm resolution T1 template image.

Results
Lesion analysis
Rule switching task
Performance of the age-matched control group was used to estimate the expected range of error rates/response times for the rule switching task in the wider population of neurologically normal subjects. Patients were classified as impaired in the task if either their uncorrected error rates (i.e. excluding corrected errors, see Fig. 1B) or reaction times fell more than two standard deviations above the mean of control group performance (an uncorrected response error rate >10% of trials or mean saccadic response time/latency >638 ms). Ten of the 23 patients were classified as impaired in the rule switching task according to this criterion.

Lesion overlap plots for the impaired patient group revealed a region of maximal overlap within the right anterior insula cortex (Fig. 3A). None of the unimpaired patients had lesions inside this region (Fig. 3B). Correlation analyses were also carried out to determine whether lesion volume was related to performance in the task. This showed a significant correlation between lesion size and response latency (person coeff’ = 0.505, P < 0.05), but no correlation between lesion size and error rates.

MRicro software was used to carry out a voxelwise χ² analysis in which the statistical likelihood of observed versus expected numbers of impaired/unimpaired patients was assessed for patients sharing damage to a given voxel for each and every voxel in the brain (Rorden and Karnath, 2004). The resulting plot (Fig. 3C) shows regions for which the χ² statistic reached statistical significance in white, yellow and ochre (critical value = 3.84, df = 1, P = 0.05). The peak χ² value was located within a small region of the anterior insula cortex corresponding to BA47, although more dorsal/anterior regions extending along the inferior frontal gyrus including BA44 and BA45 also reached statistical significance.
Eye movement and feedback

Fig. 1 (A) Schematic of oculomotor rule switching task. Successive stages of the task are illustrated from top left to bottom right. Subjects make saccades based on a rule linking a coloured shape with a movement to either the left or the right. Feedback is given following a fixation >800 ms on one of the response boxes allowing several eye movements to be made before a decision is recorded and feedback is given to the subject. After a random number of trials (‘n’) feedback indicated that the rule had reversed. (B) Saccades directed to the incorrect location were often followed by secondary corrective movements (‘corrected errors’). This is shown schematically alongside eye position against time traces for corrected error trials. Both example eye position traces show trials for which an initial saccade is directed towards the incorrect location followed by a secondary saccade which brings the eye onto the correct location.
Antisaccade task

The same approach was used to analyse the association between antisaccade impairments and lesion location. For the control subject group, the mean proportion of saccade errors in the antisaccade block was 11% of trials ranging between 0 and 45%. The upper band of the 95% confidence intervals of control performance was 20.7% and the standard deviation of control subject error rates was 14.9%. A criterion of two standard deviations above the mean of control group performance (40.8% errors) was used to classify patients into impaired/unimpaired groups. Eleven out of the 16 patients tested were classified as being impaired according to this criterion. We also examined the distribution of saccadic latency (i.e. reaction time) in the patient group relative to the control group. Only two patients had mean antisaccade latencies which lay more than two standard deviations above the mean of control performance (725 ms). Both of these patients were also classified as impaired based on their rate of errors in the antisaccade task.

Lesion overlap analysis revealed two loci of maximal overlap in the impaired group within homologous regions of white and grey matter of either the right or left ventrolateral frontal (VLF) cortex (Fig. 4A). All unimpaired
patients had lesion ROIs which fell outside of this region (Fig. 4B), whilst only one of the impaired patient group had damage outside this region (head of caudate nucleus, patient 16). There was no significant correlation between lesion volume and error rates.

As the lesion overlap plots suggested that damage to homologous regions of either left or right hemisphere led to increased saccade errors, lesions were remapped onto a single hemisphere in the voxelwise analysis. The peak value was once again located within a small region of the anterior insula cortex corresponding to BA47. Other VLF regions within BA44 and BA45 also reached statistical significance (Fig. 4C).

Lesion analysis summary

In summary, lesions affecting the right VLF cortex were predictive of impairments in the rule switching task. Impaired antisaccade performance was also associated with damage to the same region of VLF cortex, although patients classified as impaired in this task were equally likely to have lesions in homologous regions of the left and right hemisphere.

Subsequent detailed behavioural analysis classified patients according to lesion type: left/right and VLF/non-VLF frontal (regardless of impairments). Twelve of the 24 patients were judged to have lesions that included the VLF region (5 left: patients 17, 18, 19, 21 and 24; 7 right hemisphere: patients 1, 3, 8, 9, 13, 14 and 23, see Fig. 2).

Behavioural analysis: rule switching task

Response errors

Two-way analyses of variance (ANOVA) were carried out on error rates using subject group (patient type or control/patient) and trial after rule change (one to six with trial 1 being the first trial after the feedback which instructed each change in rule mappings) as factors. Errors were classified according to whether or not they were corrected with a secondary saccade prior to the feedback or uncorrected resulting in ‘actual’ errors (Fig. 1B).

Corrected saccade errors occurred more frequently on trials immediately following a rule change [significant effect of trial: $F(5,105) = 4.01$, $P < 0.005$] but there was no significant difference in corrected errors between the control and patient groups. However, there was a significant increase in the number of uncorrected errors between the VLF and non-VLF patient groups [$F(1,21) = 11.72$, $P < 0.025$] as well as between VLF patients and controls [$F(1,30) = 18.26$, $P < 0.001$]. Consistent with the results of the lesion analysis (see above), this effect was due predominantly to an increase in uncorrected error rates.
in the right VLF patients, as evidenced by a significant difference between uncorrected errors in the right VLF group and controls \([F(1,26) = 16.97, P < 0.001]\) with no significant difference in uncorrected errors between left VLF patients and controls \([F(1,22) = 0.28]\). An ANOVA directly comparing right and left VLF patients also revealed an interaction between trial after rule change and subject group, with the difference in uncorrected errors between groups being most marked on the first trial following a rule change \([F(1,10) = 7.82, P < 0.02]\) (Fig. 5). When data from the first trial after a rule change was excluded, the difference between left and right VLF groups did not reach significance, although the right VLF patients were still impaired relative to the non-VLF patient group \([F(1,17) = 7.15, P < 0.02]\) and healthy controls \([F(1,26) = 12.89, P < 0.001]\).

Error direction

We also examined the direction of patients’ errors relative to the damaged/undamaged hemisphere. Patients overall made significantly more corrected errors into the contralesional relative to ipsilesional field \([F(1,20) = 17.44, P < 0.001]\). However, there was also an interaction between side of lesion and direction of error, such that left hemisphere patients were more likely to correct contralesional errors and right hemisphere patients made overall fewer corrected errors. This interaction only reached significance for the VLF group \([F(1,10) = 16.05, P < 0.005]\). When the same analysis was carried out for uncorrected (i.e. actual) errors, there was no significant effect of direction (ipsi versus contralesional) \([F(1,20) = 0.71, \text{n.s.}]\) or interaction between side and lesion \([F(1,20) = 0.82, \text{n.s.}]\) (Fig. 6).

In summary, analysis of error direction reveals an important difference in the behaviour of left and right hemisphere VLF patients. Although left VLF patients made contralesional response errors, 68% of these errors were corrected with secondary saccades. In contrast, patients with right VLF damage made an equal number of contralesional and ipsilesional errors and only corrected around 30% of these errors (Fig. 6).

Latencies

Latencies of correct responses were analysed using 2-way ANOVAs with subject group (patient/control or VLF/non-VLF) and trial after rule change as factors (trials 1 to 6). This analysis confirmed a significant main effect of trial after rule change, with latencies being greatly increased on
the first trial after a change in rule mappings \(F(5,105) = 5.52, P < 0.0001\) as well as a significant difference overall between VLF and non-VLF frontal patients \(F(1,21) = 10.97, P < 0.005\) and VLF patients versus control subjects \(F(1,31) = 22.22, P < 0.0001\). Both left and right VLF patients showed increased response latencies [left VLF versus controls: \(F(1,21) = 6.27, P < 0.025\); right VLF versus controls: \(F(1,27) = 27.23, P < 0.0001\)]. However only in the case of left VLF patients there was a significant interaction between this effect and trial after rule change \(F(5,105) = 3.14, P < 0.025\) reflecting the absence of a strong effect of trial after rule change on response latencies for the left VLF group (Fig. 5).

Behavioural analysis: anti/prosaccade task

Errors

In contrast to the rule reversal task, almost all errors were corrected with a secondary saccade in the antisaccade task (>99%) and no errors (i.e. spontaneous antisaccades) were made by any of the patients or control subjects in the prosaccade task blocks. Comparison between the performance of patients with VLF and non-VLF damage in the antisaccade task showed a significant increase in the rate of erroneous saccades directed towards contralesional targets (paired sample t-test, \(t = 3.87, P < 0.001\), one-tailed; means: contralesional 56%; ipsilesional 41%). However, interestingly the antisaccade ‘unimpaired’ group (whose lesions lay entirely outside the VLF region) nevertheless showed a small but significant increase in errors towards contralesional targets \((t = 2.36, P < 0.05\), one-tailed; contralesional 13.4%; ipsilesional 6.6%).

Latencies

A 2-way, one within, one between factor ANOVA with direction (contra/ipsilesional) and patient group (antisaccade impaired/unimpaired) was used to analyse mean saccadic latency on correct antisaccade trials. No significant effect of direction \(F(1,11) = 0.049\) n.s.) or patient group was found, although there was a tendency overall towards slower response latencies in the antisaccade impaired group \(F(1,11) = 3.25, P = 0.09\). A similar analysis was carried out on the latency of error saccades in the antisaccade task and revealed no significant difference between groups \(F(1,15) = 0.46\), n.s.). However, the antisaccade impaired group had significantly longer prosaccade latencies than the age-matched control group (independent samples
the medial and lateral frontal cortex were found to be studied using various cognitive tasks. The same regions of Owen (2000) examined the loci of frontal activations in 20 neuroimaging studies in healthy subjects. Duncan and in cognitive control is also emphasized by a large number of effector modalities, including eye movements (Aron 2004a, b). Along with other patient-based studies (e.g. Aron et al., 2004a), the importance of the inferior frontal region in cognitive control is also emphasized by a large number of neuroimaging studies in healthy subjects. Duncan and Owen (2000) examined the loci of frontal activations in 20 studies using various cognitive tasks. The same regions of the medial and lateral frontal cortex were found to be activated across studies, including a cluster of activations extending along the frontal operculum and into the anterior insula. More recently, Dosenbach et al. (2006) has described sustained (block related) and transient (trial/event related) activity within bilateral VLF areas across several tasks which utilized different sensory input and motor output modalities. These findings emphasize the domain generality of processing in frontal regions, consistent with the possibility that VLF cortex constitutes part of a general ‘task set’ control system (Braver and Barch, 2006).

On superficial inspection, many fMRI studies that have directly studied the antisaccade task do not highlight the inferior frontal region as being an important component in a network for oculomotor control. However, it should be noted that many of these studies have used region of interest analyses in which areas not implicated in standard models of the oculomotor system are excluded from detailed analysis (e.g. Desouza et al., 2003; Connolly et al., 2004). Several studies which have taken a more inclusive approach have found VLF activity during antisaccades. Matsuda et al. (2004) showed strong bilateral activity in the posterior section of the inferior frontal gyrus for contrasts of both antisaccades relative to rest and antisaccades relative to prosaccades. Connolly et al. (2000) describe ventral frontal activity associated in both antisaccades and ‘anti pointing’ tasks which they label as ‘ventral premotor’. The authors describe the area as ‘situated ventral to the inferior frontal sulcus and immediately anterior to the precentral gyrus’ i.e. the posterior inferior frontal gyrus. Most recently, Chikazoe et al. (2007) have shown activity in the right inferior frontal gyrus during a task in which antisaccade trials occur with reduced frequency and the length of the preparatory/instruction period prior to target onset is reduced.

Whilst consistent with the wider literature on cognitive control, our results are problematic for accounts which argue for a critical and exclusive role for the DLPFC or FEF in the inhibitory control of stimulus driven saccades (Goldman-Rakic, 1987; Funahashi et al., 1989, 1993; Pierrot-Deseilligny et al., 1991, 2005; Rivaud et al., 1994). Although many of the VLF patients tested here had large lesions affecting other cortical areas, one of the patients classified as impaired in both tasks had a very small region of damage confined to the posterior part of the right inferior frontal gyrus (Patient 9). Furthermore, the finding that patients classified as ‘unimpaired’ (based on norms derived from a group of age-matched controls) showed a significant increase in contralosional (relative to ipsilateral) antisaccade errors indicates that damage to other parts of the frontal lobe can impair inhibitory control to a degree (e.g. frontal pole, patients 10 and 12). Therefore, whilst the present results are unequivocal in demonstrating that the DLPFC and FEF are not the only frontal lesion sites that result in increased antisaccade errors, our findings do not directly contradict the results of previous studies which have reported deficits in these patients.

![Fig. 6](image-url) Relative direction of corrected and uncorrected saccade errors in the rule reversal task for patients with either left or right VLF lesions. Unfilled segment of bar plots indicate uncorrected errors as in Fig. 5.

t-test: latency $t = 2.62, P < 0.02$; patients 276 ± 63 ms; controls 211 ± 50 ms).
cognitive inhibitory control across multiple effector modalities (Aron et al., 2004a, b). Taken together, these findings suggest that the supplementary motor complex (within which the SEF lies) has a motor-modality-specific organization and engages inhibitory control under conditions for which the demand to exert control varies unpredictably. In contrast, VLF damage leads to more general impairments in inhibitory control which span effector modalities.

Finally, as well as having implications for the functional neuroanatomy of cognitive control, the present results also have important implications for our understanding of the human consequences of neurological damage. Impaired representations of task rules and deficits in inhibitory control over saccades could have potential consequences for patients in the real world, where many tasks require us to ignore attentionally salient stimuli and implement complex gaze shifting strategies to achieve arbitrary task goals (Land and Furneaux, 1997; Land et al., 1999; Hodgson et al., 2000; Hodgson and Golding, 2003; Kennard et al., 2005). Future research might profitably assess the extent to which such deficits impact on the everyday lives of patients and what compensatory strategies and rehabilitative measures may be beneficial in such cases.

Conclusions

Our results show that VLF damage causes impairments in the inhibitory control of saccadic eye movements. Damage to this region in both the left and right hemisphere results in failures to suppress stimulus cued saccades in the antisaccade task as well in a rule switching task in which responses are executed based on changing stimulus response rules. Patients with right VLF damage often fail to correct saccade errors during rule switching, whilst left-sided patients make more corrective movements and less actual errors following a rule change. The results are consistent with a role for bilateral VLF cortex in inhibitory oculomotor control, with the right VLF region playing an additional role in the monitoring and control of behaviour based on arbitrary task rules.

Acknowledgements

This study was supported by Wellcome Trust Programme Grant Number: 037222/2/98/A and Wellcome Trust Project Grant Number: 072082/2/03/Z. We would like to acknowledge the advice of Chris Rorden (University of Southern Carolina) in the analysis of patient lesion data. Funding to pay the Open Access publication charges for this article was provided by The Wellcome Trust.

References

Connolly JD, Melvyn A Goodale, Goltz HC, Munoz DP. fMRI activation in the human frontal eye field is correlated with saccadic reaction time. J Neurophysiol 2004; 94: 605–11.

Pierrot-Deseilligny C, Muri RM, Nyffeler T, Milea D. The role of the human dorsolateral prefrontal cortex in oculomotor behavior. Clinical