Risk and protective factors for meningococcal disease in adolescents: matched cohort study

Robert Booy, Zambon, Catherine Peckham, Clare Booth, Nigel Klein, Ed Kaczmarski and Joanna Tully, Russell M Viner, Pietro G Coen, James M Stuart, Maria

BMJ 2006;332:445-450; originally published online 10 Feb 2006;
doi:10.1136/bmj.38725.728472.BE

Updated information and services can be found at:
http://bmj.com/cgi/content/full/332/7539/445

These include:

References
This article cites 39 articles, 17 of which can be accessed free at:
http://bmj.com/cgi/content/full/332/7539/445#BIBL

4 online articles that cite this article can be accessed at:
http://bmj.com/cgi/content/full/332/7539/445#otherarticles

Rapid responses
5 rapid responses have been posted to this article, which you can access for free at:
http://bmj.com/cgi/content/full/332/7539/445#responses

You can respond to this article at:
http://bmj.com/cgi/eletter-submit/332/7539/445

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

Other Infectious Diseases (1582 articles)
Other Neurology (3650 articles)
Adolescents (510 articles)

Notes

To order reprints of this article go to:
http://www.bmjournals.com/cgi/reprintform

To subscribe to BMJ go to:
http://bmj.bmjjournals.com/subscriptions/subscribe.shtml
Risk and protective factors for meningococcal disease in adolescents: matched cohort study

Joanna Tully, Russell M Viner, Pietro G Coen, James M Stuart, Maria Zambon, Catherine Peckham, Clare Booth, Nigel Klein, Ed Kaczmarski, Robert Booy

Abstract

Objective To examine biological and social risk factors for meningococcal disease in adolescents.

Design Prospective, population based, matched cohort study with controls matched for age and sex in 1:1 matching. Controls were sought from the general practitioner.

Setting Six contiguous regions of England, which represent some 65% of the country's population.

Participants 15-19 year olds with meningococcal disease recruited at hospital admission in six regions (representing 65% of the population of England) from January 1999 to June 2000, and their matched controls.

Methods Blood samples and pernasal and throat swabs were taken from case patients at admission to hospital and from cases and matched controls at interview. Data on potential risk factors were gathered by confidential interview. Data were analysed by using univariate and multivariate conditional logistic regression.

Results 144 case control pairs were recruited (74 male (51%); median age 17.6). 114 cases (70%) were confirmed microbiologically. Significant independent risk factors for meningococcal disease were history of preceding illness (matched odds ratio 2.9, 95% confidence interval 1.4 to 5.9), intimate kissing with multiple partners (3.7, 1.7 to 8.1), being a university student (3.4, 1.2 to 10) and preterm birth (3.7, 1.0 to 13.5). Religious observance (0.09, 0.02 to 0.6) and meningococcal vaccination (0.12, 0.04 to 0.4) were associated with protection.

Conclusions Activities and events increasing risk for meningococcal disease in adolescence are different from in childhood. Students are at higher risk. Altering personal behaviours could moderate the risk. However, the development of further effective meningococcal vaccines remains a key public health priority.

Introduction

Invasive meningococcal disease is a life threatening condition, with endemic and epidemic manifestations in developed and developing countries. A primary incidence peak occurs in children aged <5 years and a smaller peak in teenagers. The incidence of meningococcal disease in England and the United States rose during the 1990s, with a marked shift in age distribution towards older teenagers and a rise in disease due to serogroup C strains. This rise, together with a higher case fatality rate in the 15-19 year age group, caused much concern and was a major stimulus in the United Kingdom for developing the conjugate meningococcal serogroup C vaccine, which has been highly successful.

The reasons for the peak in meningococcal disease in teenagers are poorly understood. Greater transmission of meningococci has been implicated, as prevalence of carriage increases through childhood.

Studies in the peak teenage years are limited to subgroups such as college students or to small numbers enrolled in larger studies. Possible risk factors in children include deficiency of mannose-binding lectin, preceding respiratory infections, particularly influenza A, overcrowding, poverty, passive smoke exposure, and mouth kissing.

Adolescence is a period of biopsychosocial maturation during which the adoption of potentially risky behaviours may produce a distinct risk profile. Studies have found living in college dormitories, patronage of campus bars, and active smoking to be risk factors. Other factors relevant to teenagers may include infection with Epstein-Barr virus, behaviours such as deep kissing, and substance misuse.

Religious observance may be protective. We conducted a matched cohort study of meningococcal disease in adolescence to examine potential risk and protective factors.

Methods

Study setting and subjects

We conducted a prospective, population based, matched, cohort study covering six contiguous regions of England (North Thames, South Thames, Anglia and Oxford, South West, Trent, West Midlands), which represent about 65% of the country's population. The process of gaining ethical approval was challenging due to the wide geographic area and nature of both the study content and subject age group. It had implications on the recruitment of subjects and became the subject of a paper.

The research fellow and research nurse collected data from 5 January 1999 until 9 June 2000, covering two winter peaks of meningococcal disease. Eligible subjects were teenagers aged 15-19 who had been admitted to hospital with a primary clinical diagnosis of meningococcal infection (signs of septicemia or meningitis in association with hemorrhagic rash, or both). Laboratory confirmation of disease was sought at the reference laboratory in Manchester through culture or detection by polymerase chain reaction of Neisseria meningitidis from a normally sterile site or serodiagnosis in a patient with a clinically compatible illness.

Consultants in communicable disease control, clinicians, the national meningococcal reference unit, or the Meningitis
Research

Research Foundation helpline notified eligible subjects of the study centre by telephone or electronic mail. After referral of a possible case, the research fellow contacted the attending clinician to confirm the clinical diagnosis and to obtain informed consent for the patient’s participation. We excluded cases if identified after the fifth day of admission to hospital, the subject had died, the attending doctor declined to participate, the subject did not speak English, or approval from the local research ethics committee had not yet been obtained, along with the blood sample.

We recruited controls from the case patient’s general practitioner’s list of patients. Each general practitioner was asked to contact the three patients on their list of the same sex as, and closest date of birth to, the case. This was to control selection bias by the doctor. We preferentially recruited the control nearest in age to the case. If none of these subjects consented we asked the doctor to send invitation letters to the next three who were nearest in age. Trained researchers interviewed subjects confidentially at home shortly after discharge from hospital. Each case-control pair was interviewed on the same day where possible. The interviewer completed standardised questionnaires.

As we were interested in specific, not necessarily habitual, behaviours, we obtained data from cases pertaining to the two week period before admission to hospital. We reduced the time between illness and interview and used memory aids (timelines, calendars, and personal diaries) to reduce recall bias for cases. To reduce recall bias in controls, we questioned subjects about the two week period immediately preceding interview. Because of this difference in time periods, it was not possible to blind researchers to the status of cases and controls.

Data collection

We obtained data from the participants on preceding illness: symptoms of prodromal illness (in cases) and preceding illness (in cases and controls—for example, fever, headache, cough, rhinorhoea, sore throat); on health behaviours: passive smoke exposure (number of smokers in participant’s place of residence), active smoking (one or more cigarettes per day), and consumption of alcohol and illicit drugs; on intimacy behaviours: superficial and deep kissing contacts, close social contacts, and sharing of beds and bedrooms; on social behaviours: attendance at religious ceremonies, leisure activities, and social activities; on socioeconomic variables: education or occupation, crowding, and home and car ownership. We regarded participants as head of household if they were employed or living independently.

Case patients gave a blood sample, pernasal swab, and throat swab within five days of admission. At interview, we collected a convalescent blood sample from cases and a blood sample, throat swab, and pernasal swab from controls. We considered the control blood sample comparable to the case convalescent sample as it was taken at a similar time (median difference of 0 days; interquartile range of −28 days to 0 days). We placed swabs in viral transport medium and transported them immediately to the Health Protection Agency (HPA; formerly Public Health Laboratory Service, PHLS), together with the blood sample. Blood samples were separated with serum divided into 4 aliquots and stored at −20°C. The viral transport medium containing the swabs was stored at −70°C.

The Health Protection Agency’s national meningococcal reference unit in Manchester performed meningococcal serogroup B and C serology. Laboratory technicians at the University of Edinburgh used indirect immunofluorescence to perform virology for Epstein-Barr virus. Immunoglobulin G antiviral capsid antibody positivity was taken to indicate past infection with Epstein-Barr virus. Recent infection with Epstein-Barr virus was defined as positivity for IgM antiviral capsid antibody. The respiratory virus unit at the Central Public Health Laboratory in London performed influenza serology and reverse transcriptase polymerase chain reaction analysis were performed. Haemagglutinin inhibition antibody titres were performed for influenza A subtypes H3N2 and H1N1 and for influenza B. Titres of > 320 against influenza A H3N2 and > 80 for influenza B were taken to indicate infection within the last year (personal communication, Maria Zambon, Health Protection Agency, 2000).

Laboratory technicians extracted DNA and RNA from throat and pernasal swabs. The Health Protection Agency undertook analysis by reverse transcriptase polymerase chain reaction for influenza A and B and respiratory syncytial virus and by polymerase chain reaction for Chlamydia pneumoniae and Mycoplasma pneumoniae. A lab technician determined mannose-binding lectin haplotypes at the Institute of Child Health in London. The exon 1 region of the mannose-binding lectin structural gene and promoter region polymorphisms were determined by using previously described heteroduplex procedures and the results used to predict concentrations of mannose-binding lectin.

Subjects were divided into groups of low, medium, or high production of mannose-binding lectin, with low producers defined as either those subjects who were homozygous, or compound heterozygous for exon 1 mutations or those heterozygous for an exon 1 mutation and also carrying the low promoter variant.

Statistical analysis

We used Stata 6 (College Station, Texas, YEAR?? OUTSTANDING QUERY) for our statistical analyses. We used Mantel Haenzel odds ratios to perform univariate analysis. We performed multivariate stepwise logistic regression; we included variables if they had a univariate significance level of P < 0.2. We determined socioeconomic status by household ownership of car and home and by subject occupation and included this a priori in the model. As risk behaviours may vary by time of year, we also included a seasonality variable in the model, with meningococcal disease high season defined as 70 or more cases per week. We made power calculations: in respect to active smoking, we speculated that the prevalence in cases and controls would be 30% and 12%, respectively, requiring 116 case-control pairs to provide 95% confidence intervals with 90% power. Using a similar approach for kissing, we hypothesised that multiple exposures in the previous fortnight might be found in 40% of cases and 20% of controls, requiring 118 pairs. These calculations did not take account of matching.

Results

During the study period, public health units in the study regions received 319 statutory notifications of meningococcal disease in teenagers aged 15–19. Of these, 244 were referred to the study centre and 153 were recruited. Of the 91 cases referred but not recruited, 25/244 (10%) were referred after the fifth day of admission; 18 (7%) came from districts where local ethical approval was delayed, 16 (7%) died before recruitment, 12 (5%) had an alternative diagnosis, 11 (5%) refused, in 5 (2%) the clinician in charge refused, 3 (1%) did not speak English, and 3 (1%) were not recruited for miscellaneous reasons. Of the 153 recruited, two died after recruitment, two later refused to participate, and five
were lost to follow-up, resulting in 144 cases from whom questionnaire data were collected.

Of the 144 controls, 55 (38%) were the first control and 36 (25%) were the second control approached. In 20% of cases, we recruited the fourth or greater control.

Of the 144 case-control pairs, 74 (51%) were male (table 1). The median age at referral was 17.6 for cases and 17.7 for controls. Median time from admission of the case to interview was 53 (range 4-343) days for cases and 64 (19-317) days for controls.

Microbiological confirmation of diagnosis was available for 114 cases; positive on polymerase chain reaction in 50 (44%), positive on culture in 38 (33%), and positive on serology in 111 (97%). Sixty six (58%) strains were due to serogroup B, 43 (38%) serogroup C, 1 (0.9%) serogroup W135, 1 (0.9%) serogroup Y, and 3 were ungroupable. We found no significant differences between microbiologically proved and unproved cases in terms of admission to intensive care or symptoms of illness.

In the univariate matched analysis of biological factors, case patients were significantly more likely to report being unwell with a preceding illness in the fortnight before admission than were the controls in the fortnight before interview (P = 0.001; table 2). Samples for viral serology were available for 105 case-control pairs (73%). More cases than controls were positive for Epstein-Barr virus antiviral capsid antibody IgG (P = 0.12); three of 129 (2%) cases and none of 116 controls were IgM positive. We found no differences between cases and controls in the proportions with influenza A H3N2 or H1N1 titres > 320 or influenza B titres > 80. Of 81 cases with paired serology, nine (11%) showed at least a fourfold rise for influenza A (H3N2 7, H1N1 2), and five (6%) showed at least a fourfold rise for influenza B. The trend was for preterm birth (defined as < 37 weeks’ gestation) to be associated with increased risk. Our a priori hypothesis didn’t define 30 weeks as an important cut-off (this was defined as 37 weeks). However, after data collection was complete and during further analysis of data, we found that five cases but no controls were born at gestation of 30 weeks or less.

Thrroat or pernasal swab specimens came from 86 cases and 139 controls. We found no positive results on polymerase chain reaction from throat or pernasal swabs for influenza A or B, mycoplasma or respiratory syncytial virus. Samples for mannose-binding lectin analysis were available for 92 pairs (64%). Low production of mannose-binding lectin was not associated with disease. Immunisation was protective, and preterm delivery was linked with increased risk.

In the univariate analysis of health behaviours and social variables (table 3), factors associated with greater risk included having more than one intimate kissing contact and sharing a bedroom. Lower risk was associated with attending a religious ceremony at least once a week. Living in dormitory accommodation and socioeconomic status measured by subject’s occupation or by using a composite variable of car and home ownership were not significant.

Multivariate analysis

In the final model, factors independently associated with higher risk of meningococcal disease were history of preceding illness, intimate kissing being a student and preterm birth (table 4). Factors independently associated with lower risk included religious observance and having received a vaccine against serogroup C meningococci. Multivariate analysis using only microbiologically confirmed cases resulted in less power but gave similar results except for preterm birth (odds ratio 2.3, 95% confidence interval 0.5 to 10.0, P = 0.5) and attendance at religious ceremonies (0.13, 0.01 to 1.4, P = 0.09). Regular active smoking, passive smoking, use of illegal drugs, bedroom sharing, and socioeconomic status were not independently associated with risk. Use of the registrar general’s classification for parental occupation as a measure of socioeconomic status instead of the composite variable of car or home ownership did not materially change the final model.

Discussion

Risk factors for meningococcal disease in adolescents differ from those in childhood. We conducted a large population based
In the fortnight period before illness (cases) or interview (controls). The definition of preceding illness has previously been identified as a risk factor during the adolescent peak (in 15-19 year olds). A specific epidemiological investigation of disease risk in young people through general practice can be beneficial.

The association of preterm birth and disease has not been described previously and should be interpreted with caution. Significance was lost when only microbiological confirmed cases were included. Our hypothesis was that gestation < 37 weeks increased risk.

Interestingly, we found that five of our case patients but no controls were born at gestation of 30 weeks or less. This association may be a chance finding, biased by parental report, or, perhaps, could reflect real differences in immune function and time of birth.

Possible association with weeks of gestation

The association of preterm birth and disease has not been described previously and should be interpreted with caution. We did not find a significant relation between genetic determinants of production of mannose-binding lectin and risk of disease despite evidence that deficiency in mannose-binding lectin is a risk factor in young children. This may reflect lack of power, but it supports recent suggestions that mannose-binding lectin becomes less important in protecting against meningococcal disease with increasing age as elements of the acquired immune system mature.

Association with kissing

Several adolescent health behaviours were significantly associated at univariate level, but only deep kissing with multiple partners remained independently significant in the multivariate model. This association has not been noted before in studies of college students and older adults. We did not find a significant relation between genetic determinants of production of mannose-binding lectin and risk of disease despite evidence that deficiency in mannose-binding lectin is a risk factor in young children. This may reflect lack of power, but it supports recent suggestions that mannose-binding lectin becomes less important in protecting against meningococcal disease with increasing age as elements of the acquired immune system mature.

Table 3 Univariate analyses for health behaviours and social variables. Values are numbers (percentages) unless otherwise indicated.

<table>
<thead>
<tr>
<th>Exposures</th>
<th>Cases (n=144)</th>
<th>Controls (n=144)</th>
<th>Matched odds ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular smoker</td>
<td>47 (33)</td>
<td>45 (31)</td>
<td>4.1 (0.6 to 2.8)</td>
<td>0.001</td>
</tr>
<tr>
<td>Multiple close contacts who smoke*</td>
<td>104 (72)</td>
<td>92 (64)</td>
<td>4.0 (2.9 to 5.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>Regular consumption of illegal drugs (once a week or more)</td>
<td>23 (16)</td>
<td>13 (9)</td>
<td>2.9 (1.0 to 2.8)</td>
<td>0.009</td>
</tr>
<tr>
<td>Any alcohol consumed*</td>
<td>123 (85)</td>
<td>113 (78)</td>
<td>2.9 (0.9 to 3.9)</td>
<td>0.000</td>
</tr>
<tr>
<td>Regular partner</td>
<td>60 (42)</td>
<td>54 (38)</td>
<td>2.3 (0.7 to 1.9)</td>
<td>0.000</td>
</tr>
<tr>
<td>Multiple intimate kissing contacts*</td>
<td>42 (29)</td>
<td>22 (15)</td>
<td>2.1 (1.2 to 3.7)</td>
<td>0.001</td>
</tr>
<tr>
<td>Shared bedroom*</td>
<td>96 (67)</td>
<td>74 (51)</td>
<td>2.2 (1.2 to 3.6)</td>
<td>0.000</td>
</tr>
<tr>
<td>Lives in dormitory accommodation</td>
<td>10 (7)</td>
<td>8 (6)</td>
<td>1.4 (0.4 to 4.4)</td>
<td>0.01</td>
</tr>
<tr>
<td>Attended bar or party</td>
<td>128 (89)</td>
<td>115 (80)</td>
<td>1.0 (1.0 to 3.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>Daily visit to friends home</td>
<td>53 (37)</td>
<td>50 (35)</td>
<td>1.3 (0.7 to 2.4)</td>
<td>0.01</td>
</tr>
<tr>
<td>Attended one or more religious ceremonies*</td>
<td>46 (32)</td>
<td>40 (28)</td>
<td>1.3 (0.7 to 2.4)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Socioeconomic status

A categorical variable based on home and car ownership (odds ratio relative to owning neither home nor car):º

<table>
<thead>
<tr>
<th>Categorical variable</th>
<th>Cases (n=144)</th>
<th>Controls (n=144)</th>
<th>Matched odds ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No home and no car ownership</td>
<td>12 (8)</td>
<td>12 (8)</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>One or more cars but do not own home</td>
<td>22 (15)</td>
<td>22 (15)</td>
<td>1.4 (0.5 to 4.4)</td>
<td>0.3</td>
</tr>
<tr>
<td>Own home but no car</td>
<td>5 (3)</td>
<td>5 (3)</td>
<td>1.0 (0.3 to 3.6)</td>
<td>0.6</td>
</tr>
<tr>
<td>One or more cars plus own home</td>
<td>102 (71)</td>
<td>110 (76)</td>
<td>1.9 (0.9 to 2.3)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Subject’s occupational status (odds ratio relative to being employed):º

- Employed: 36 (25) vs. 38 (27), 0.7
- University student: 50 (35) vs. 46 (32), 1.2
- School student: 52 (36) vs. 51 (36), 1.1
- Others: 5 (4) vs. 8 (6), 0.6

*In the fortnight period before illness (cases) or interview (controls).

In most cases, this refers to the parents—see methods for clarification.

Study of risk factors for meningococcal disease in adolescents and a specific epidemiological investigation of disease risk during the adolescent peak (15-19 year olds).

Role of preceding illness

Independent biological risk factors for meningococcal disease included a history of preceding illness and preterm birth. A preceding illness has previously been identified as a risk factor and we confirmed this by using a symptom based definition of preceding illness. Preceding illness occurred in 53% of cases and 31% of controls so was neither necessary nor sufficient for disease. Its significance was unchanged after adjustment for high season of meningococcal disease or influenza. The precise aetiology of this preceding illness is unclear and may be a heterogeneous array of respiratory viruses. A case-control study of epidemic meningococcal disease in sub-Saharan Africa implicated adenovirus, parainfluenza, rhinovirus, mycoplasma, and respiratory syncytial virus. However, similar to Stuart et al.,” we found no evidence for respiratory syncytial viral virus being a predisposing agent. Our data did not support a role for Epstein-Barr virus or influenza infection, similar to findings from another recent study. However, outbreak and surveillance data linkage studies show that influenza may predispose to meningococcal disease. It is likely that our cases were no longer shedding virus by the time of recruitment, but serological results were not supportive.

Possible association with weeks of gestation

The association of preterm birth and disease has not been described previously and should be interpreted with caution. The association of preterm birth and disease has not been described previously and should be interpreted with caution.

Association with kissing

Several adolescent health behaviours were significantly associated at univariate level, but only deep kissing with multiple partners remained independently significant in the multivariate model. We did not find a significant relation between genetic determinants of production of mannose-binding lectin and risk of disease despite evidence that deficiency in mannose-binding lectin is a risk factor in young children. This may reflect lack of power, but it supports recent suggestions that mannose-binding lectin becomes less important in protecting against meningococcal disease with increasing age as elements of the acquired immune system mature.

Table 4 Multivariate analysis of risk factors for meningococcal disease

<table>
<thead>
<tr>
<th>Exposures</th>
<th>Matched odds ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccinated against serogroup C meningococci</td>
<td>0.12 (0.04 to 0.37)</td>
<td><0.001</td>
</tr>
<tr>
<td>Multiple intimate kissing contacts*</td>
<td>2.3 (1.7 to 3.1)</td>
<td>0.001</td>
</tr>
<tr>
<td>Attended one or more religious ceremonies*</td>
<td>1.2 (0.2 to 0.5)</td>
<td>0.01</td>
</tr>
<tr>
<td>Preceding illness*</td>
<td>2.9 (1.4 to 5.9)</td>
<td>0.003</td>
</tr>
<tr>
<td>Born at less than 37 completed weeks of pregnancy</td>
<td>3.7 (1.0 to 13.5)</td>
<td>0.05</td>
</tr>
<tr>
<td>Occupational status (odds ratio relative to being employed)</td>
<td>3.3 (0.8 to 13.4)</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Odds ratio adjusted for all other factors shown and controlled for parental car or home ownership and meningococcal disease season. Data for all variables available in 130 pairs. Excluding the gestation variable did not confound odds ratio estimates and model then included 136 pairs.

*In the fortnight period before illness (cases) or interview (controls).
Other possible risk factors

We found no significant role for active or passive smoking in adolescents, similar to previous findings in young adults, but in contrast to evidence that passive smoke exposure is a risk factor in children, who are more likely to be exposed to meningococci because of higher carriage rates in smoking parents.

Recent attendance at a religious event was linked to lower risk of meningococcal disease, as reported elsewhere. The odds ratio was minimally changed when only microbiologically confirmed cases were included. The association was confirmed when the analysis was repeated for habitual religious attendance in the previous year (data not shown), indicating minimal bias due to non-attendance by cases because of preceding preterm or prodromal illness. Religious observance has been associated with lower risk for all cause mortality, substance abuse, and sexual risk taking in adolescents and has beneficial immune effects. The most plausible explanation for our finding is that attendance at a religious event is associated with other lifestyle factors that promote health and protect against infection and that were not fully accounted for in our multivariate analysis.

University and school students were at higher risk of meningococcal disease than people in employment. Contrary to previous reports, we did not find that living in dormitory-style accommodation increased risk, although numbers were small (7% of cases, 6% of controls).

Student status may increase risk through crowding and increased social mixing, or through increased “risky” behaviours compared with employed young people of the same age.

Limitations of our study

Our findings are susceptible to the biases common to case-control studies, despite efforts to minimize selection and recall biases and confounding. Recruitment of cases and controls was population based and prospective. Only 4.5% of eligible case patients refused participation. Although 63% of our recruited controls were either the first or second approached, 20% were the fourth or greater approached. This is a source of selection bias, as these secondary controls may well be different from those not willing to participate (and this may relate to risk of exposure to meningococcal disease). Further, findings concerning religious observance may be confounded by control selection, in that highly observant young people may be more likely to volunteer. The approach taken of asking the case about a different time period to the control may introduce bias; however, the limitation of our approach has been addressed and at least partially validated in a recent statistical paper that used data from our study. It addressed the question: does disease incidence, and possibly other risk factors, vary with time of year, and concluded that the effect of risk factors and interactions may be adjusted for the time of year effect in a standard condition logistic regression analysis (as our paper has done) without introducing any bias.

We attempted to avoid recall bias by using a short recall period, memory aides, and a different recall period for cases and controls (adjusted for by a seasonal variable). The median times between hospital admission and interview for the case and control were 53 and 64 days, respectively, highly comparable to those in a recent case-control study of invasive pneumococcal disease by Nuorti et al. However, this study asked the case and control about the month before the case patient’s illness, which was easier to do as their questions related more to habitual behaviour, which is easier to remember.

Excluding the few cases that died biased our sample towards less severe cases. Restricting analysis to microbiologically proved cases showed minimal confounding of the identified risk factors apart from preterm birth. A further potential source of bias arises from preceding preterm illness, as a reduction in risk behaviours in those who are becoming ill may underestimate the effect of risk factors for meningococcal disease and over-estimate protective effects. However, analysis of long term habitual data on active smoking and religious attendance indicated that behaviour change due to illness was not a significant source of bias.

Conclusions

We identified a pattern of risk and protection for meningococcal disease in adolescence different from that seen in younger children. Intimate kissing with multiple partners, preceding illness, and being a student conferred higher risk of disease, whereas religious attendance and receipt of a meningococcal vaccine were associated with lower risk. Factors that are important in meningococcal disease risk in younger children, such as passive smoking and deficiency of mannose-binding lectin, were not significant in adolescence. Our findings imply that changing personal behaviours could reduce the risk of meningococcal disease in adolescence. Although behaviour based health promotion messages might have a small role in reducing the risk of disease, such campaigns are unlikely to have a major impact. The development of further effective meningococcal vaccines therefore remains a key public health priority.

What is already known on this topic

The incidence of meningococcal disease has two peaks: in early childhood and in adolescence.

The incidence and case fatality rate in UK teenagers increased dramatically in the mid to late 1990s.

Students living in dormitories are at greater risk than the general population of adolescents, but little is known of the risk factors for most cases of meningococcal disease in adolescents.

What this study adds

Risk factors for meningococcal disease in adolescence differ from those in childhood.

Independent risk factors include having multiple intimate kissing partners, history of preceding upper respiratory tract illness, preterm birth, and being a student.

Reduced risk was associated with religious ceremony attendance and meningococcal vaccination.

Changing personal behaviours could reduce the risk of meningococcal disease in adolescence.

Many thanks to all those who have contributed substantially to this work: Dorothy Crawford, Elizabeth Haworth, Robert George, Tim Harrison, Mary Ramsay, Mac Turner, Mike Levin, Diane Melvin, Steve Gray, Alan Blackwell, Julie Roberts, Jennie Borg, Jane Scotland, Helen Bedford, Stuart Logan, and Angie Wade and the many clinicians and public health doctors who referred cases.

Contributors: JT coordinated the study and drafted the manuscript. PGC was primarily responsible for data cleaning and analysis and contributed to manuscript revisions. JMS, MZ, CP, and EK contributed to study design, analysis, and manuscript revisions. CB and NK analysed genetic data and contributed to manuscript revisions. MZ was also responsible for laboratory
analysis of viral data. RM and RB designed the study, analysed data, and revised the manuscript. RB is guarantor.

Funding: Meningitis Research Foundation. UK; in addition, the Wolfson Foundation provided an equipment grant. RM is supported by the Health Foundation.

Competing interests: RB has acted as a paid consultant for Wyeth, GlaxoSmithKline, and Aventis Pasteur. MZ has received honoraria from Berna Biotech to speak at industry conferences on influenza. The UK Health Protection Agency has received funding from Chiron vaccines, Aventis Pasteur, Roche, and GlaxoSmithKline to carry out analytical work on a contractual basis in MZ's laboratory. Ethical approval: North Thames multicentre research ethics committee and 125 local research ethics committees.

10 Harrison LH, Dwyer DM, Maples CT, Billman LL. Risk of meningococcal infection in college students. JAMA 1999;281:1006-10.