UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

PRINCIPAL COMPONENT OUTLIER DETECTION AND SIMCA - A SYNTHESIS

MERTENS, B; THOMPSON, M; FEARN, T; (1994) PRINCIPAL COMPONENT OUTLIER DETECTION AND SIMCA - A SYNTHESIS. ANALYST , 119 (12) 2777 - 2784.

Full text not available from this repository.

Abstract

Principal component outlier detection methods are discussed and their application in the soft independent modelling of class analogy (SIMCA) method of pattern recognition is clarified. SIMCA is compared to allocation procedures based on the Mahalanobis distance. Finally, the differences between the SIMCA method and quadratic discriminant analysis are discussed. The discussion is illustrated with an example from spectroscopy.

Type:Article
Title:PRINCIPAL COMPONENT OUTLIER DETECTION AND SIMCA - A SYNTHESIS
Keywords:OUTLIERS, PRINCIPAL COMPONENT, SOFT INDEPENDENT MODELING OF CLASS ANALOGY, PATTERN RECOGNITION, SPECTROSCOPY, NEAR-INFRARED SPECTRA, DISCRIMINANT-ANALYSIS, DESIGNED EXPERIMENT, MODELS, RESIDUALS
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Statistical Science

Archive Staff Only: edit this record