UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Analysis of the 5'-upstream regions of the human relaxin H1 and H2 genes and their chromosomal localization on chromosome 9p24.1 by radiation hybrid and breakpoint mapping.

Garibay-Tupas, JL; Csiszár, K; Fox, M; Povey, S; Bryant-Greenwood, GD; (1999) Analysis of the 5'-upstream regions of the human relaxin H1 and H2 genes and their chromosomal localization on chromosome 9p24.1 by radiation hybrid and breakpoint mapping. J Mol Endocrinol , 23 (3) 355 - 365.

Full text not available from this repository.

Abstract

Relaxins are known endocrine and autocrine/paracrine hormones that play a major role in reproduction. In the human there are two relaxin genes, H1 and H2 which share 90% sequence homology within their coding region. The biological and evolutionary significance of two highly homologous and biologically active human relaxins is unknown. In order to achieve a better understanding of the regulatory mechanisms involved in the differential expression of these two genes and to gain insight into their role(s) in the preterm premature rupture of the membranes, we have investigated the properties of their 5'-upstream regions and mapped them both by radiation hybrid and breakpoint mapping into the same chromosome 9p24.1 locus. The 5' ends of these relaxin genes could be divided into a proximal highly homologous segment and a distal non-homologous region. Within the proximal region are contained several putative regulatory elements common to both genes, suggesting a similar regulatory mechanism. The clustering of the relaxin genes within the same chromosomal locus suggests that these genes may be under a common regulation. On the other hand, a distinct gene-specific regulation may also exist for the individual relaxin genes since cis elements specific to each gene were identified at their 5' ends. Moreover, the observed divergence at the distal region of their 5'-upstream sequences may provide the structural features that act as gene-specific transcription regulators. Since the two genes are highly homologous in both their coding and flanking regions, the divergence at the distal region of their 5' ends may be important in the regulation of these genes and in their involvement in the pathology of preterm birth.

Type:Article
Title:Analysis of the 5'-upstream regions of the human relaxin H1 and H2 genes and their chromosomal localization on chromosome 9p24.1 by radiation hybrid and breakpoint mapping.
Location:ENGLAND
Language:English
Keywords:5' Untranslated Regions, Base Sequence, Cell Line, Chromosome Breakage, Chromosomes, Human, Pair 9, Cloning, Molecular, Female, Fetal Membranes, Premature Rupture, Humans, Hybrid Cells, In Situ Hybridization, Fluorescence, Male, Molecular Sequence Data, Multigene Family, Physical Chromosome Mapping, Pregnancy, Promoter Regions, Genetic, Relaxin, Response Elements, TATA Box, Translocation, Genetic
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Life Sciences > Biosciences (Division of)

Archive Staff Only: edit this record