Age-Related Increase of Kynurenic Acid in Human Cerebrospinal Fluid – IgG and β2-Microglobulin Changes

Berthold Kepplingera, b Halina Barand Astrid Kainza, b Heber Ferraz-Leitee
Jea Newcombef Pavol Kalinab, c

aDepartment of Neurology, Klinikum Mostviertel Amstetten, General Hospital, Amstetten, bDepartment of Neurology, cNeuroradiological Division, Diagnostic and Therapy Centre, Österrichiklinikum, Neuropsychiatric Hospital, Mauer/Amstetten, dPharmacology and Toxicology, Veterinary Medical University Vienna, eUniversity Clinic of Neurosurgery, Vienna University Hospital AKH, Vienna, Austria; fNeuroResource, Institute of Neurology, University College London, London, UK

\textbf{Key Words}
Ageing \cdot Cerebrospinal fluid \cdot Kynurenic acid \cdot IgG \cdot β2-Microglobulin

\textbf{Abstract}
Kynurenic acid (KYNA) is an endogenous metabolite in the kynurenine pathway of tryptophan degradation and is an antagonist at the glycine site of the N-methyl-D-aspartate receptors as well as at the alpha 7 nicotinic cholinergic receptors. In the brain tissue KYNA is synthesised from L-kynurenine by kynurenine aminotransferases (KAT) I and II. A host of immune mediators influence tryptophan degradation. In the present study, the levels of KYNA in cerebrospinal fluid (CSF) and serum in a group of human subjects aged between 25 and 74 years were determined by using a high performance liquid chromatography method. In CSF and serum KAT I and II activities were investigated by radioenzymatic assay, and the levels of β2-microglobulin, a marker for cellular immune activation, were determined by ELISA. The correlations between neurochemical and biological parameters were evaluated. Two subject groups with significantly different ages, i.e. <50 years and >50 years, \(p < 0.001\), showed statistically significantly different CSF KYNA levels, i.e. 2.84 ± 0.16 fmol/μl vs. 4.09 ± 0.14 fmol/μl, \(p < 0.001\), respectively; but this difference was not seen in serum samples. Interestingly, KYNA is synthesised in CSF principally by KAT I and not KAT II, however no relationship was found between enzyme activity and ageing. A positive relationship between CSF KYNA levels and age of subjects indicates a 95% probability of elevated CSF KYNA with ageing (\(R = 0.6639, p = 0.0001\)). KYNA levels significantly correlated with IgG and β2-microglobulin levels (\(R = 0.5244, p = 0.0049\); \(R = 0.4253, p = 0.043\), respectively). No correlation was found between other biological parameters in CSF or serum. In summary, a positive relationship between the CSF KYNA level and ageing was found, and the data would suggest age-dependent increase of kynurenine metabolism in the CNS. An enhancement of CSF IgG and β2-microglobulin levels would suggest an activation of the immune system during ageing. Increased KYNA metabolism may be involved in the hypofunction of the glutamatergic and/or nicotinic cholinergic neurotransmission in the ageing CNS.

\textcopyright 2005 S. Karger AG, Basel
Introduction

Glutamate is an important metabolic agent in the mammalian central nervous system (CNS), and its excitotoxic activity has been proposed to contribute to the pathogenesis of various CNS disorders in humans [1–3]. Kynurenic acid (KYNA) is a well-known endogenous antagonist of the glutamate ionotropic excitatory amino acid receptors N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate [4] and of the nicotine cholinergic subtype alpha 7 receptors [5], and KYNA neuroprotective and anticonvulsive activities have been demonstrated in animal models of neurodegenerative diseases [6, 7]. Because of KYNA’s neuromodulatory character, its involvement has been speculatively linked to the pathogenesis of a number of neurological conditions including those in the ageing process.

Different patterns of abnormalities in various stages of KYNA metabolism in the CNS have been reported in Alzheimer’s disease [8], Parkinson’s disease [9] and Huntington’s disease [10–12]. In HIV-1-infected patients [13] and in patients with Lyme neuroborreliosis [14] a marked rise of KYNA metabolism was seen.

In the ageing process KYNA metabolism in the CNS of rats shows a characteristic pattern of changes throughout the life span [15–18]. A marked increase of the KYNA content in the CNS occurs before the birth, followed by a dramatic decline on the day of birth [16]. A low activity was seen during ontogenesis [15], and a slow and progressive enhancement occurs during maturation [15] and ageing [17]. This remarkable profile of KYNA metabolism alterations in the mammalian brain has been suggested to result from the development of the organisation of neuronal connections and synaptic plasticity, development of receptor recognition sites, maturation and ageing [4].

There is significant evidence that KYNA can improve cognition and memory [19], but it has also been demonstrated that it interferes with working memory [20]. Impairment of cognitive function in various neurodegenerative disorders is accompanied by profound reduction and/or elevation of KYNA metabolism. The view that enhancement of CNS KYNA levels could underlie cognitive decline is supported by the increased KYNA metabolism in Alzheimer’s disease [8], by the increased KYNA metabolism in Down’s syndrome [21] and the enhancement of KYNA function during the early stage of Huntington’s disease [11]. In 1999, Baran et al. [8] suggested that the blocking of the glutamatergic neurotransmission in Alzheimer’s disease patients due to increased CNS KYNA levels could be involved in memory and cognition impairments. Since KYNA can block both glutamatergic [4] and the alpha 7 nicotinic cholinergic activities [5], it is reasonable to speculate that the fluctuation of KYNA metabolism could significantly influence both. The potency of KYNA as a nicotinic antagonist is similar to its potency as an antagonist at the glycine site of NMDA receptors [22]. The recent memory deficit and/or hypofunction of neurotransmission [3] and hyperfunction of KYNA [8] may reflect as a key event, which could share several important elements in dementia of Alzheimer and ageing as well.

L-kynurenine is the primary metabolite of the enzymatic degradation of tryptophan by indoleamine-2,3-dioxygenase (IDO). An interaction between glial and immune cells through the release of cytokines has been described in many pathological conditions, and the secretion of cytokines, such as interferon-γ, interleukin-1 and 6, tumor necrosis factor-α, in response to injury and infection play a prominent role in the initiation and maintenance of neurotoxic immune responses within the injured CNS and further propagate CNS damage [23–26]. Activation of IDO by interferon-γ has been observed in human monocytes/macrophages and a variety of human cells and cell lines in vitro [27, 28]. β2-Microglobulin, a marker of activation of immune cells, is a small protein associated with the class I major histocompatibility complex antigen. Increasing β2-microglobulin levels are considered to reflect an activation of the cellular immune system and enhancement in cell membrane turnover [29, 30]. Several disorders of the CNS are associated with increased cerebrospinal fluid (CSF) β2-microglobulin levels, such as in Alzheimer type dementia [31], brain infarct and meningitis [32] and HIV infection [33]. A positive correlation between increase of kynurenine metabolites and β2-microglobulin levels in CSF and serum has been reported in HIV type 1 infection [13]. In the present study we asked whether KYNA metabolism and markers of the immune system undergo alterations in the CSF and serum of human subjects without neurological disease but with advancing age. We analysed the correlation between changes of KYNA metabolism and biological parameters in CSF and serum in order to find indications for relationships between KYNA levels and ageing and immune markers involvement.
Measurement of Kynurenine Aminotransferases I and II in CSF and Serum

Measurement of of kynurenine aminotransferases (KAT) I and II activities in CSF and serum was performed using a radioenzymatic assay described by Schmidt et al. [39]. In brief, the reaction mixture contained CSF or serum, 100 μM 1.175 μCi/μmol [3H]-L-kynurenine, 1 mM pyruvate, 70 μM pyridoxal-5’-phosphate and 150 mM 2-aminoo-2-methyl-propanol buffer pH 9.6 for KAT I in a total volume of 200 μl. For KAT II activity measurement 150 mM Tris-acetate buffer pH 7.0 was used. The measurement of KAT II activity was performed in the presence and absence of 5 mM L-glutamine. After incubation for 16 h at 37°C, the reaction was stopped by adding 14 μl of 50% trichloroacetic acid and 1 ml of 0.1 M HCl. Denatured proteins were removed by centrifugation, and the synthesized [3H]KYNA was purified on Dowex 50W cation exchange column [38] and quantified by liquid scintillation spectrometry. Blanks were prepared by boiling CSF or serum samples for 15 min before adding the reaction mixture.

Measurement of β2-Microglobulin in CSF and Serum

β2-Microglobulin concentration in CSF and serum was measured using a commercial sandwich ELISA method.

Statistical Analysis

All mean values ± SEM are given. For statistical significance the one-way ANOVA and Student’s t test were applied. Linear regression analysis was performed using the least squares method. Correlation between clinical parameters, e.g. CSF IgG, IgG index, CSF KYNA levels, serum KYNA levels and KAT activities with ageing was analysed. The levels for statistical significance were taken as p < 0.05.

Results

Biological Parameters

Two groups of human subjects of significantly different ages (age <50 and age >50) were evaluated. The mean age of the groups was 35.4 ± 2.2 years, ranging from 25 to 50 years, and 61.6 ± 3.3 years, ranging from 50 to 74 years, and the difference between both groups was significant, i.e. p < 0.001 (table 1). The values of CSF IgG, the CSF:serum IgG ratio and β2-microglobulin in CSF were significantly higher in subjects of the >50 years age group (table 1). A moderate increase of protein levels in CSF and of the CSF:serum albumin ratio was observed of the >50 years age group. No significant differences regarding parameters could be found in the serum.

Correlation between Biological Parameters

Using a linear regression analysis it could be observed that with increasing age of the subjects the CSF IgG values also increased significantly (fig. 1; R = 0.4582, p = 0.0146). However, no positive correlation was found between IgG index and advancing age (R = 0.2988, p = 0.05).
Subsequently, significant correlation was obtained between the value of CSF IgG and the IgG index (Fig. 2; \(R = 0.5556 \), \(p = 0.0026 \)). A moderate positive relationship was found between the CSF:serum albumin ratio and age and between CSF:serum IgG ratio and age (\(R = 0.3644 \), \(p = 0.0873 \); \(R = 0.3552 \), \(p = 0.0690 \), respectively).

KYNA Levels in CSF and Serum

In all subjects aged from 25 to 74 years the mean value of KYNA levels in CSF was \(3.8 \times 10^{-8} \) and \(26.54 \times 10^{-8} \) fmol/l, respectively. In the \(>50 \) years age group the level of CSF KYNA was significantly higher (\(p < 0.001 \)) than in subjects of the age \(<50 \) years, but no differences could be found in the sera (Fig. 3).
in each group no influence of sex on CSF KYNA levels was found.

Kynurenine Aminotransferase I and II

Using a radioenzymatic assay we measured formation of KYNA from \(L \)-kynurenine in CSF and less in serum. Using assay condition for KAT I and II the conversion of \(L \)-kynurenine to KYNA was 155.2 ± 20.3 and 19.2 ± 4.3 KYNA fmol/µl/h, respectively. However, in 9 CSF samples of 27 no formation of KYNA (negative value) was seen using KAT I reaction conditions, and in remaining samples the results ranged between 35 and 346.5 KYNA fmol/µl/h. The KAT II activity in CSF ranged between 2.4 and 34.0 KYNA fmol/µl/h and in 19 samples no formation of KYNA (negative value) was measured. In the presence of 5 mM glutamine KAT II activity was moderately reduced to 15.4 ± 2.9 KYNA fmol/µl/h. The value of KAT II in the presence of 5 mM glutamine ranged between 5.0 and 29.3 KYNA fmol/µl/h and in 17 CSF probes no formation was seen (negative value). Using assay condition for KAT I and II, in all serums the conversion was less than 2 fmol/µl/h or there was no formation of KYNA.

Correlation between Kynurenine Metabolism and Biological Parameters

A positive relationship was found between CSF KYNA levels and advancing age, indicating a 95% probability of increasing CSF KYNA levels with age (fig. 4; \(R = 0.6639, p < 0.0001 \)). No positive relationship between both parameters was measured in the serum (\(R = 0.1118, p = 0.6114 \)). A comparison between CSF KYNA and CSF IgG levels revealed a significantly positive relationship (fig. 5; \(R = 0.5244, p = 0.0049 \)). No positive correlation was seen between CSF KYNA levels and the IgG index (\(R = 0.1898, p = 0.343 \)), between CSF KYNA levels and ratio serum:CSF IgG (\(R = 0.3021, p = 0.1257 \)) and be-
increase of human CSF Kynurenic Acid with Ageing

Neurosignals 2005;14:126–135

131

between CSF KYNA and ratio serum:CSF albumin (R = 0.3057, p = 0.1210). No correlation could be found between KAT activities and biological parameters.

In the CSF but not in the serum significant differences between two subject groups (age <50 vs. age >50) could be observed regarding the β2-microglobulin level (table 1). A positive correlation was found between CSF β2-microglobulin and ageing, whereas no correlation was seen between serum β2-microglobulin and ageing (fig. 6; R = 0.5671, p = 0.005 and R = –0.039, p = 0.8564), respectively. Furthermore, a positive relationship was found between CSF KYNA and β2-microglobulin levels, and a moderate relationship was found between CSF IgG and β2-microglobulin concentrations (fig. 7; R = 0.4253, p = 0.0430 and R = 0.3866, p = 0.0684, respectively). No positive relationship was found between serum β2-microglobulin and serum IgG (R = 0.357, p = 0.0939), between serum β2-microglobulin and serum IgM (R = 0.0327, p = 0.8823) and between serum β2-microglobulin and serum KYNA levels (R = 0.1256, p = 0.5679).

Discussion

The most notable finding of the study is that in the CSF of human subjects without detectable neurological disease, the KYNA level significantly increase with advancing age. In addition, with advancing age, the levels of im-

Fig. 6. Correlation between CSF β2-microglobulin levels and age (○), and lack of correlation between serum β2-microglobulin levels and age (■) in human subjects.

Fig. 7. Correlation between CSF KYNA and CSF β2-microglobulin concentrations (○) and between CSF IgG and CSF β2-microglobulin levels (■) in human subjects.
munoreactive markers IgG and β2-microglobulin were increasing, whereas no increase of KYNA, β2-microglobulin or IgG was found in the serum. Interestingly, Heyes et al. [40] observed higher CSF KYNA levels (3.49 ± 0.44 vs. 2.23 ± 0.28 nM) and higher CSF L-kyureninone levels (52.9 ± 3.1 vs. 33.2 ± 2.8 nM) in older control subjects (59.1 ± 14.2 vs. 35.2 ± 8.4 years, respectively). Furthermore, in line with our data, another research group has found that in childhood levels of CSF IgG also were significantly different from adult reference readings [41].

The increase of CSF KYNA with ageing has been reported in sheep as well [42]. Revealed data would suggest the age-related increase of KYNA in human CSF and the involvement of increased immune markers.

Recently, Erhardt et al. [43] demonstrated increased CSF KYNA with ageing in schizophrenia patients, but no correlation was found in healthy volunteers, probably due to a narrow age range (between 22 and 44 years) of healthy volunteers investigated. The mean of CSF KYNA values of subjects investigated in the present study was 3.3 ± 0.17 nM. Accumulated data on CSF KYNA levels in healthy volunteers/control subjects indicate a wide variation of concentration (between 0.67 and 4.09 nM) [7, 40, 43, 44]. Several previously published papers suggested a connection between increase of CSF KYNA and pain [37, 45]. Indeed, Swartz et al. [37] found high CSF KYNA levels in patients with fever or headache (5.09 ± 1.04 nM). Interestingly, analgesics are also able to modify the KYNA concentration; however, the mechanism of increasing KYNA levels due to pain and its action to modulate pain needs to be more clarified [46].

KYNA content measured in CSF depends on differently regulated events involved in KYNA metabolism, such as substrate availability, uptake, its formation and release into CSF and diffusion into the blood [4, 18, 38, 47, 48]. In adult animals KYNA does not or very slightly penetrates through the blood-brain barrier (BBB) [49]. With increasing age of the subjects analysed, a moderate increase of BBB permeability was observed in line with previously published data [50], and a slightly positive relationship between CSF:serum albumin concentrations ratio and ageing or CSF KYNA levels would not exclude a very moderate diffusion of KYNA into the aged CNS. Since no difference in KYNA serum level was found in subjects investigated, we would suggest that CSF KYNA increases with advancing age originate from the brain. In this connection, in the rat brain but not in the rat liver, the KYNA metabolism was significantly increased with advanced age, as well [17].

In the CNS, KYNA may derive from L-kyurenine that was synthesised either by CNS tissue following IDO, the first enzyme of the kyurenine pathway in extrahepatic tissue, or from L-kyurenine that had entered from blood [51]. Interestingly, the L-kyurenine was shown to be significantly higher in the CSF of healthy aged rats [52] and in older human control subjects too [40]. Furthermore, those authors [51] have also demonstrated that the ratio of L-kyurenine:tryptophan was doubled in aged rats (28–32 months), comparing to mature rats (4–6 months), and suggested age-related activation of IDO activities. Similar changes might occur in the human brain, for example due to the induction of enzyme IDO activities. Human macrophages express IDO activities, and the enzyme is sensitive to interferon-γ [53]. A significant increase of kyurenine pathway enzyme activities due to interferon-γ stimulation was demonstrated in blood macrophages, astrocytes, neurones and also B lymphocyte [54]. No data are currently available about interferon-γ formation in the human CNS during the ageing process.

In the human brain KYNA is synthesised from L-kyurenine by KAT I and KAT II [39, 55, 56]. Both proteins show distinct catalytic properties, e.g. KAT I has a pH optimum of 9.5–10, while KAT II displays a pH optimum of 7.4 [39, 55, 56]. In contrast to KAT II, KAT I shows particular preferences for amino acceptors and is inhibited by millimolar concentrations of L-amino acids, e.g. L-glutamine, L-phenylalanine and L-tryptophan [39, 56]. The cellular localisation of human brain KAT I and KAT II has not been demonstrated so far, whereas in the rat brain KAT antibodies used in immunohistological studies demonstrated a preferential astrocyte localisation of the protein [57].

Interestingly, in animal studies using in situ hybridisation it has been shown recently that the KAT I mRNA activity is expressed not only in the mitochondria of neurone and glial cells but also in the cytosol of the choroid plexus epithelial cells [58]. It is therefore reasonable to believe that the synthesis of KYNA also may take place in the choroid plexus due to KAT I activity, and synthesised KYNA is released into CSF and/or speculatively due to changes of the choroid plexus membrane the KAT proteins (or cells) from cytosol could easily diffuse into CSF. Indeed, in our previous [59] and in present study we measured in some CSF probes a moderate formation of KYNA, due to KAT I activity, but in some we found a negative value. Human KAT I is sensitive to amino acids [39, 56] and KAT I inhibition in the CSF was seen in the presence of 5 mM glutamine. In human, the CSF amino acids levels are in micromolar range, and no increase

Neurosignals 2005;14:126–135

Kepplinger/Baran/Kainz/Ferraz-Leite/
Newcombe/Kalina
was observed in aged brain [60]. There could not be found any correlations between CSF KAT activities and other parameters.

An important pathological feature of a variety of neurological disorders, including the normal ageing process of the brain, is the activation of microglia. It has been suggested that the activation of microglia in white matter with advancing age may play a substantial role in the pathogenesis of normal brain ageing [61]. The increases of KYNA in the CSF during ageing could take place due to elevated KATs expression/activities in microglia and astrocytes as well. The latter cells are also immunoresponsive within the CNS [57]. Immunohistopathological studies indicate a predominantly astrocytic localisation of KAT in rat brains [57] and the major constituent of intermediate filaments in astrocytes, glial fibrillary acidic protein is increased with progressing age [62]. Astrocytes provide a variety of endogenous signals and diffusible factors that may serve to induce the formation of tight junctions, the expression of various proteins, maintain overall BBB integrity and promote differentiation and maturation of microglia [26, 63]. A large body of evidence now exists which implicates excessive microglia activation and proliferation in the development of neuronal death in various pathological disease states and in ageing process [63, 64]. At least in animal studies, experiments on KYNA synthesis with neuron-depleted rat brain tissue, which exhibits markedly elevated KYNA formation at a time of pronounced astrogliosis, suggest that astroglias are responsible for de novo formation of brain KYNA [38].

Interestingly, Morgan et al. [65] showed that food restriction decreased the transcription of glial fibrillary acidic protein in ageing rats and lowered microglia activation during ageing. A sparing of spatial memory can be achieved with applied diet restriction and the effect of ageing on NMDA receptor is associated with age-related declines in spatial memory [66]. The increases of IgG and β₂-microglobulin levels in the CSF during ageing can occur due to immune system activation. A positive relationship was found between both parameters. The age-related increase of CSF KYNA levels, IgG content and β₂-microglobulin concentration is of particular interest with respect to the ability to block NMDA and cholinergic alpha 7 receptors by drugs that activate tryptophan metabolism. In this connection, the CSF β₂-microglobulin level is significantly higher in Alzheimer’s disease patients [31]. The binding site of the NMDA receptor antagonist is significantly reduced in 30-month-old mice, which indicates an age-related decline of neuronal response [66–68]. KYNA not only blocks the NMDA receptors [4], but also the alpha 7 subtype of nicotine cholinergic receptors [5]. The increase of CSF KYNA with ageing and the increase of KYNA metabolism in the CNS of Alzheimer’s disease patients [8] would suggest a long-lasting blockade of glutamatergic and cholinergic neurotransmission, events that are involved in the pathogenesis of memory and cognitive impairments [3]. Therefore, the activation of tryptophan/kynurenine metabolism in aged persons and Alzheimer’s disease patients may result in a negative response(s). An alteration of the receptor activities due to the ageing process may involve changes in KYNA metabolism and probably both processes could reciprocate.

In summary, increases in CSF KYNA, IgG and β₂-microglobulin levels have been identified in subjects of advanced age, and the data obtained would suggest the hypoglutamatergic and hypocholinergic stages in aged brains. Further studies need to be accomplished in order to provide more information on the mechanism(s) of direct and/or indirect KYNA action and its involvement in the memory and cognition impairment during ageing. The relationship between KYNA changes and activation of IgG and β₂-microglobulin levels with ageing is not yet clear.

Acknowledgements

This work is supported by Multiple Sklerosis Forschungsgesellschaft Wien (B.K.) and in part by Austrian ‘Fonds der Wissenschaftlichen Forschung’, project No. 15371 (H.B.).
Increase of Human CSF Kynurenic Acid with Ageing