UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Scanning tunnelling microscopy of bilayer manganites

Bryant, B.E.M.; (2010) Scanning tunnelling microscopy of bilayer manganites. Doctoral thesis, UCL (University College London). Green open access

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
22Mb

Abstract

This thesis describes experimental work carried out on bilayer manganites with the general composition R_{2-2x}A_{1+2x}Mn_2O_7, where R is a trivalent rare earth cation and A is a divalent alkaline-earth cation. Experiments have been carried out primarily using Scanning Tunnelling Microscopy (STM) and Spectroscopy (STS); bulk electrical transport, MPMS and LEED measurements have also been made. The primary results are obtained from single crystal samples of PrSr_2Mn_2O_7. This compound provides a surface suitable for STM study when cleaved at low temperature in ultra-high vacuum: atomic resolution can be readily achieved. The expected square lattice is observed, together with a larger scale surface modulation which is not presently explained. In some areas of the PrSr_2Mn_2O_7 surface a population of adatoms and surface vacancies is observed. STS data indicate that adatoms carry a negative charge compared to the rest of the surface, and vacancies a positive charge: the adatoms and vacancies are interpreted as oxygen adatoms and oxygen vacancies. A detailed study is made of the oxygen adatoms and vacancies: this is believed to be the firrst such study made on a manganite surface. Oxygen adatoms on the PrSr_2Mn_2O_7 surface are found to be mobile: hopping and adatom-vacancy recombination are observed. Additional results are reported on the layered manganite compound La_{2-2x}Sr_{1+2x}Mn_2O_7 at a range of cation doping x. For the LaSr_2Mn_2O_7 compound (x = 0.5) spectroscopic variation has been identi_ed in a variable-temperature STS survey. This indicates the coexistence of two surface electronic phases, possibly the charge ordered and antiferromagnetic phases.

Type:Thesis (Doctoral)
Title:Scanning tunnelling microscopy of bilayer manganites
Open access status:An open access version is available from UCL Discovery
Language:English
Additional information:Abstract contains LATEX text. Please see PDF for rendered formulae and equations
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > London Centre for Nanotechnology
UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Physics and Astronomy

View download statistics for this item

Archive Staff Only: edit this record