UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Target recognition techniques for multifunction phased array radar

French, A.; (2010) Target recognition techniques for multifunction phased array radar. Doctoral thesis , UCL (University College London). Green open access


Download (20MB)


This thesis, submitted for the degree of Doctor of Philosophy at University College London, is a discussion and analysis of combined stepped-frequency and pulse-Doppler target recognition methods which enable a multifunction phased array radar designed for automatic surveillance and multi-target tracking to offer a Non Cooperative Target Recognition (NCTR) capability. The primary challenge is to investigate the feasibility of NCTR via the use of high range resolution profiles. Given stepped frequency waveforms effectively trade time for enhanced bandwidth, and thus resolution, attention is paid to the design of a compromise between resolution and dwell time. A secondary challenge is to investigate the additional benefits to overall target classification when the number of coherent pulses within an NCTR wavefrom is expanded to enable the extraction of spectral features which can help to differentiate particular classes of target. As with increased range resolution, the price for this extra information is a further increase in dwell time. The response to the primary and secondary challenges described above has involved the development of a number of novel techniques, which are summarized below: • Design and execution of a series of experiments to further the understanding of multifunction phased array Radar NCTR techniques • Development of a ‘Hybrid’ stepped frequency technique which enables a significant extension of range profiles without the proportional trade in resolution as experienced with ‘Classical’ techniques • Development of an ‘end to end’ NCTR processing and visualization pipeline • Use of ‘Doppler fraction’ spectral features to enable aircraft target classification via propulsion mechanism. Combination of Doppler fraction and physical length features to enable broad aircraft type classification. • Optimization of NCTR method classification performance as a function of feature and waveform parameters. • Generic waveform design tools to enable delivery of time costly NCTR waveforms within operational constraints. The thesis is largely based upon an analysis of experimental results obtained using the multifunction phased array radar MESAR2, based at BAE Systems on the Isle of Wight. The NCTR mode of MESAR2 consists of the transmission and reception of successive multi-pulse coherent bursts upon each target being tracked. Each burst is stepped in frequency resulting in an overall bandwidth sufficient to provide sub-metre range resolution. A sequence of experiments, (static trials, moving point target trials and full aircraft trials) are described and an analysis of the robustness of target length and Doppler spectra feature measurements from NCTR mode data recordings is presented. A recorded data archive of 1498 NCTR looks upon 17 different trials aircraft using five different varieties of stepped frequency waveform is used to determine classification performance as a function of various signal processing parameters and extent (numbers of pulses) of the data used. From analysis of the trials data, recommendations are made with regards to the design of an NCTR mode for an operational system that uses stepped frequency techniques by design choice.

Type: Thesis (Doctoral)
Title: Target recognition techniques for multifunction phased array radar
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng
URI: http://discovery.ucl.ac.uk/id/eprint/19675
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item