UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

An astrobiological study of high latitude martian analogue environments

Cousins, C.R.; (2010) An astrobiological study of high latitude martian analogue environments. Doctoral thesis, UCL (University College London). Green open access

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
20Mb

Abstract

The search for life on Mars is in part reliant on the understanding of Martian environments, both past and present, in terms of what life may inhabit these environments, how this life may be preserved in the rock record, and how this rock record may be detected during future missions to Mars. In particular, the upcoming European Space Agency mission ‘ExoMars’ has the primary aim to identify evidence of past or present life on Mars, and the work presented here is carried out within this context. Volcanism is a geological process common to both Earth and Mars, and this work sought to conduct a multidisciplinary astrobiological study of terrestrial volcanic and associated hydrothermal environments that exist geographically at high latitudes. Specifically, subglacial basaltic volcanic environments were explored in terms of phylogenetic diversity, preservation of biosignatures, and habitability under Martian conditions. Additionally, these and other volcanic environments were utilised in the development and testing of the Panoramic Camera – an instrument that will form an integral component of the ExoMars rover instrument suite. Results presented within this thesis demonstrate that subglacially erupted lavas provide a habitat for a diverse bacterial community, and that when such a community is subject to present-day Martian analogue conditions, survivability is significantly enhanced when a simulated subglacial volcanic system (i.e. heat and ice) is present. However, the generation of bioalteration textures – a biosignature common to glassy basaltic lavas – appears to be less common in subglacially-erupted lavas than their oceanic counterparts. Lastly, this work demonstrates the ability of the ExoMars PanCam in the detection of astrobiological targets, and shows the importance of utilising Martian analogue terrains both for biological studies, and also for testing rover instrumentation in preparation for upcoming missions.

Type:Thesis (Doctoral)
Title:An astrobiological study of high latitude martian analogue environments
Open access status:An open access version is available from UCL Discovery
Language:English
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Earth Sciences

View download statistics for this item

Archive Staff Only: edit this record