UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Fundamental aspects of netted radar performance

Teng, Y.; (2010) Fundamental aspects of netted radar performance. Doctoral thesis, UCL (University College London). Green open access

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
10Mb

Abstract

Netted radar employs several spatially distributed transmitters and receivers for information retrieval. This system topology offers many advantages over traditional monostatic and bistatic systems which use a single transmitter and a single receiver. For example, it provides better utilization of reflected energy, more flexible system arrangement and enhanced information retrieval capability. Therefore, the netted radar system is of emerging interests among radar researchers. This work investigates several fundamental aspects that determine netted radar performance. This includes netted radar sensitivity, the netted radar ambiguity function and the netted radar ground plane effect. Mathematical models are developed to provide a mean to examine different aspects of netted radar performance. Software simulations examine netted radar performance over a range of parameter variations. Simulation results show that netted radar can offer better performance over traditional monnostatic and bistatic radar in many cases. Some elementary field trials have been conducted using a prototype netted radar system developed within the UCL radar group to examine aspects of netted radar performance in practice. The field trials are focused on netted radar range and sensitivity which are fundamental. The field trial results show that the theoretical benefits that netted radar can offer are generally realizable in practice.

Type:Thesis (Doctoral)
Title:Fundamental aspects of netted radar performance
Open access status:An open access version is available from UCL Discovery
Language:English
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Electronic and Electrical Engineering

View download statistics for this item

Archive Staff Only: edit this record