Integrated Optical and Electronic Interconnect
PCB Manufacturing
(OPCB)
IeMRC Flagship Project

IeMRC Conference 5th September 2007
Overview of the Project

- Integration of optical waveguides with electrical printed circuit boards (PCBs)
- Integrated Optical and electrical interconnected PCB (OPCB) for backplanes and daughter cards
- High bit rate (10 Gb/s), error-free, reliable, dense connections
- CAD design tools, Fabrication Techniques, Optical-Electrical connectors
Copper ‘pipeline’ corrupts high speed signals:

- Crosstalk
- Reflections
- Signal dissipation
- “Skin effect”
- ‘Electro Magnetic Compatibility’ Issues
- Optical signal pipelines possible
- Fit more optical channels on the board
- Send data faster down each optical ‘pipeline’
- Send optical data further (absorption permitting)
- No interfering radiation leaking outside the box
- Send multiple signals simultaneously (WDM)
Aims

1. Establish waveguide design rules
 - Build into commercial CAD layout software to ease the design of OPCBs and to ensure widespread use.
 - Understand the effect of waveguide wall roughness and cross sectional shape on loss and bit error rate.

2. Develop low cost, PCB compatible manufacturing techniques for OPCBs
 - Compare the commercial and technological benefits of several high and low risk manufacturing technologies
 - Environmental testing, reproducibility

3. Design an optical-electrical connector
 - Low cost, dismountable, passive, self-aligning, mid-board, multichannel, duplex, long life
Project Partners

Academic Partners
UCL (Lead) – Optical modelling & characterisation
Heriot-Watt University – Laser writing and polymer chemistry
Loughborough University – Laser ablation, ink jet printing, flip-chip assembly

Industrial Partners
Xyratex (Lead) – End user – mass data storage
BAE Systems – End user – aerospace applications
Renishaw – End user – optical sensor applications
Exxelis – Polymer development and fabrication
Stevenage Circuits – PCB manufacturers
Cadence – Design tools for PCBs
Rsoft Design – Modelling tools
Xaar – Print head technology
NPL – Waveguide/material characterisation
EPSRC IeMRC Support

<table>
<thead>
<tr>
<th></th>
<th>Grant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heriot Watt</td>
<td>£269,960</td>
</tr>
<tr>
<td>Loughborough</td>
<td>£259,264</td>
</tr>
<tr>
<td>UCL</td>
<td>£270,604</td>
</tr>
<tr>
<td>Grant Total</td>
<td>£799,828</td>
</tr>
<tr>
<td>Industrial Total</td>
<td>£561,000</td>
</tr>
<tr>
<td>Grand Total</td>
<td>£1,360,828</td>
</tr>
</tbody>
</table>
Research Objectives
• Commercial development of optical backplane connection technology
 o Based on prototypes developed during DTI LINK project: “Storlite”
• System design and integration of OPCB technology
Progress to date
• Parallel optical transceiver developed and under characterisation
• Single stage optical backplane engagement mechanism developed
• Commercial form factor module designed and developed
• First mechanical prototype exhibited by Xyratex and Samtec at Electronica 2006 and DesignCon 2007
• C-PCI platform and line cards developed and under characterisation

Storage System Roadmap
Storage Trends
• Increasing data bandwidth
• Decreasing disk drive form factors
• Higher system integration

Eventual incorporation of OPCB technology into high bandwidth storage systems
HIGH BANDWIDTH BACKPLANE ENVIRONMENTS

12 Drive SBOD Storage System

16 Drive EBOD Storage System

48 Drive RAID Storage System

Why do we need optical interconnects?

- Signal Integrity
- Electro-magnetic Emissions
- PCB Density
- Cooling
- Data Bandwidth

Up to 48 TB storage, 4 Gb/s fibre-channel connectivity
On-board Platform Applications

Reconfigurable Network Interconnections

High Bandwidth Signals

RF/EO Sensors & comms data
Simplified Modular Avionic Concept

- **Tx/Rx**
- **Optical switch**

Global optical fibre network

Data Concentrator

Optical and electronic backplane

Active Switch Module

Avionic Rack
Stevenage Circuits

- Discussions held on PCB capability and alignment methods
- Waveguide test data has been printed into standard photoresist using 8000 DPI artwork
- SCL will process samples to allow solder bumps for flip chip bonding connections.
- Stevenage Circuits will laser ablate some spin coated samples from Loughborough.
The Optical Technologies Group at NPL will
• characterise the optical properties of polymer planar waveguides, using proven techniques
• acquire data for modelling of prototype waveguides
• verify the capabilities of prototype waveguides

NPL has a unique range of facilities for
• measuring the properties of optical fibres and components
• characterising high speed opto-electronic components

This science is supported by direct access to the NPL National Standards.
Cadence Update

- Software installation at UCL completed
- Overview training at UCL session completed
- Further UCL support visits planned
- Cadence expectations
 - technical input to Cadence for enhancement of software layout tools
 - technology support
Investigators: David Hutt, Paul Conway, Karen Williams

Researchers: Shefiu Zakariyah (PhD student)
 John Chappell (Research Associate)

Waveguide fabrication
 - Laser ablation
 - Ink Jet printing

Connector development

Flip-chip interconnect
 - Self-alignment of lasers and photo detectors with waveguides
Excimer Laser Ablation of Waveguide Structures

- Scaleable to large areas
- One approach - ablation to leave waveguides

Diagram:

- Deposit cladding and core layers on substrate
- Laser ablate polymer
- Deposit cladding layer
Waveguide Termination

- Investigating the formation of profiled mirrors to direct light
- More efficient light capture and transmission than traditional 45° mirrors
- Careful characterisation of machining rates and design of beam delivery system required
- Metal coating to form mirror surfaces
Preliminary Work

- Strong absorption of Excimer laser by polymer
 - Efficient ablation
 - Minimal heating
- Characterisation of laser machining parameters
 - Control ablation rate / depth
 - Minimisation of debris
 - Side wall roughness

![Groove machined in acrylic – test structure](image)
Ink Jet Deposition of Polymer Waveguides

- Localised deposition of cladding and / or core materials
 - More materials efficient
 - Active response to local features
- Materials
 - Solutions
 - e.g. PMMA in solvent
 - Limited deposition rate
 - Functional materials
Ink Jet System

- Ink Jet printing system established
- Head stationary, substrate moved
- High speed camera on loan from EPSRC – droplet imaging
Ink Jet Challenges

- Ink formulation
 - Viscosity, surface tension
- Drying effects
 - Coffee stain
- Wall roughness caused by multiple droplets
- Wetting and droplet spread

PMMA on glass. Deposited by pipette.

Droplet merging, effect on wall roughness
Control of Surface Wetting

- Need to control contact angle of polymer droplet on surface
 - Wetting angle determines waveguide cross-section and printing resolution
 - Control of surface chemistry (balance of wetting and adhesion)

Wettable surface leads to broad droplet

Non-wettable surface leads to high contact angle, but limited adhesion
Preliminary Results

- Functional materials ink jetted
- Extensive spreading
- Further characterisation of process required
Preliminary Results

- Investigating process parameters to influence deposit size and spread
- Many defects to be understood
Direct Laser-writing of waveguides
 • Increase writing speeds and manufacturability

Photo-polymer Formulation
 • Optimise for faster writing; alternative polymer systems; possible dry formulation

Writing over large areas (400 – 500 mm long)
 • Stationary “writing head” with board moved on long translation stage

Connectors
 • Possible use of 45-deg out-of-plane mirrors

Advanced Optoelectronic Integration
Custom Photopolymer

• Polymer recipe
 • Exxelis (Terahertz Photonics) formulation
 • Multifunctional acrylate polymer
 • Tunable refractive index & viscosity
 • High glass transition temperature

• Polymer application
 • Spinning
 • Doctor-blading

• Polymer curing
 • Photoinitiators: Irgacure 184 / 651
 – UV-induce polymerisation
 • Direct UV laser-writing used for waveguide cores & bumps
 • Blanket curing of “large” areas using UV lamp
Writing sharply defined features – flat-top, rectangular laser spot

Gaussian beam diameter = 1.1 mm

Imaging system / lenses

60 μm square aperture

TEM00

Gaussian Beam

Imaged aperture

Images of resulting waveguide cores
Direct Laser-writing Set-up

- UV-illuminated square aperture (50 μm) imaged, 1-to-1, onto polymer-coated substrate, carried on computer-controlled x-y stage.
- Three beams available – to write: (a) vertically-walled features, or (b) plus/minus 45-deg structures.
45° Turning Mirrors

1. Direct laser writing of 45° structures

2. Patterned evaporation of gold

3. Direct laser writing of “link” waveguide

4. Coupling into waveguide
Laser written polymer structures

SEM images of polymer structures written using imaged 50 µm square aperture (chrome on glass)
Laser written polymer structures

Optical microscope image showing end on view of vertical and 45° surfaces

Cladding spun over waveguide cores (and other features): same polymer $\Delta n \sim 1\%$, blanket cured under UV lamp (N_2 atmos.)
Waveguide terminated with 45-deg mirror

Out-of-plane coupling, using 45-deg mirror (silver)

Microscope image looking down on mirror coupling light towards camera

OPTICAL INPUT
Compliant Polymer Bumps

Direct laser writing of polymer bumps

0.6 s 0.7 s 0.8 s

(a) 0.5 mW

Metal coated bumps and patterned metallisation of substrate
Large area writing

Aerotech sub-µm precision stages
600 x 300 mm travel
Latest Results

Laser-writing Parameters:
- Intensity profile: Gaussian
- Optical power: ~8 mW
- Oil immersion

Polymer
- Multifunctional acrylate
- Photoinitiator: Irgacure 184

Substrate
- FR4, with polymer undercladding
Research at UCL
David R. Selviah, Kai Wang, Ioannis Papakonstantinou, F. Anibal Fernández

• Waveguide Key Component Layout Design
• Optical Printed Circuit Board (OPCB) Design
• Waveguide Measurement
 – Loss, Bit Error Rate, Eye Diagram, Misalignment Tolerance, Wall Roughness
• Modelling and Experimental comparison
 → Design rules
Measurement system for 10 Gbit/s device

- Operating bit rate 9.95 to 11.10 Gbit/s
- Power -4.0 dBm to -1.08 dBm
- Wavelength range 840 nm to 860 nm
OPCB with MT-socket interposer

(a) MT-socket interposer

(b) MT-plug

Ceramic lens holder

Alignment Precision
x: ± 3 μm
y: ± 4 μm
z: ± 10 μm
MT - Socket interposer on the top of backplane

- 3.8870 ± 0.0001
- 0.35650 ± 0.00001
- 0.66 ± 0.01
- 0.02 mm
- 0.25 mm
- 0.53125 mm
Actual alignment of the component

registration features
waveguides
3886 µm
Waveguide photographs

50 μm × 50 μm Waveguide
- Photolithographically fabricated by Exxelis
- Cut with a dicing saw, unpolished
- VCSEL illuminated

140 μm × 140 μm Waveguide
Power received at the end of 0th waveguide as a function of the lateral distance of the VCSEL from its center. The boundaries and the centers of the waveguides on the backplane are marked. In the cladding power drops at a rate of 0.011 dB/µm.
Insertion Loss and cross-talk

6~7dB for a 70 μm width waveguide
Stability testing of the MT – socket interposer 1

Insertion loss and signal to cross-talk (SCR) as a function of mating cycle for 75 engagements.
Beam Propagation Method (BPM) modelling

Computer simulations of the optical field in a 90° waveguide bend
• left: at the start of the bend after a straight input waveguide
• right: a third of the distance along the bend.
Loss of waveguide bends as a function of bend radius

<table>
<thead>
<tr>
<th>Width (µm)</th>
<th>Radius (mm)</th>
<th>Minimum Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>13.5</td>
<td>0.74</td>
</tr>
<tr>
<td>75</td>
<td>15.3</td>
<td>0.91</td>
</tr>
<tr>
<td>100</td>
<td>17.7</td>
<td>1.18</td>
</tr>
</tbody>
</table>
Transition loss

Schematic diagram of one set of curved waveguides.

- Radius R, varied between $5 \text{ mm} < R < 35 \text{ mm}$, $\Delta R = 1 \text{ mm}$
- Light lost due to scattering, transition loss, bend loss, and reflection and back-scattering
- Illuminated by a MM fiber with a red-laser.

Light through a bent waveguide of $R = 5.5 \text{ mm} – 34.5 \text{ mm}$
Conclusions

• 11 months into the 3 year project
• Range of waveguide fabrication processes
 – High and low risk
• Strong Industrial Lead, Participation and Management
• Full Supply chain established
 – Modelling, Design Rules, Layout software, Fabrication Development, Transfer to PCB manufacturer, High bit rate measurements, end user company requirements
• Collaboration Agreement signed by partners
• IP already raised
• Secure Web Portal on-line