Measurement of $D^{*\pm}$ production in deep inelastic $e^{\pm}p$ scattering at DESY HERA

Argonne National Laboratory, Argonne, Illinois 60439-4815, USA

M. C. K. Mattingly
Andrews University, Berrien Springs, Michigan 49104-0380, USA

University and INFN Bologna, Bologna, Italy

Physikalisches Institut der Universität Bonn, Bonn, Germany

H. H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom

M. Capua, A. Mastroberardino, M. Schioppa, and G. Susinno
Calabria University, Physics Department and INFN, Cosenza, Italy

J. Y. Kim, Y. K. Kim, J. H. Lee, I. T. Lim, and M. Y. Park
Chonnam National University, Kwangju, Korea

A. Caldwell, M. Helbig, X. Liu, B. Mellado, Y. Ning, S. Paganis, Z. Ren, W. B. Schmidke, and F. Sciulli
Nevis Laboratories, Columbia University, Irvington on Hudson, New York 10027, USA

Institute of Nuclear Physics, Cracow, Poland

Faculty of Physics and Nuclear Techniques, AGH-University of Science and Technology, Cracow, Poland

A. Kotański and W. Słomiński
Department of Physics, Jagellonian University, Cracow, Poland

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

S. Schlenstedt
DESY Zeuthen, Zeuthen, Germany

G. Barbagli, E. Gallo, C. Genta, and P. G. Pelfer
University and INFN, Florence, Italy

A. Bamberger, A. Benen, and N. Coppola
Fakultät für Physik der Universität Freiburg i.Br., Freiburg i.Br., Germany

Department of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

0556-2821/2004/69(1)/012004(17)/$22.50 69 012004-1 ©2004 The American Physical Society
I. Gialas
Department of Engineering in Management and Finance, University of Aegean, Greece

B. Bodmann, T. Carli, U. Holm, K. Klimmek, N. Krumnack, E. Lohrmann, M. Milite, H. Salehi, P. Schleper, S. Stonjek,
K. Wick, A. Ziegler, and Ar. Ziegler
Hamburg University, Institute of Experimental Physics, Hamburg, Germany

C. Collins-Tooth, C. Foudas, R. Gonçalo, K. R. Long, and A. D. Tapper
Imperial College London, High Energy Nuclear Physics Group, London, United Kingdom

P. Cloth and D. Filges
Forschungszentrum Jülich, Institut für Kernphysik, Jülich, Germany

K. Nagano, K. Tokushuku, S. Yamada, Y. Yamazaki, and M. Kataoka
Institute of Particle and Nuclear Studies, KEK, Tsukuba, Japan

A. N. Barakbaev, E. G. Boos, N. S. Pokrovskiy, and B. O. Zhautykov
Institute of Physics and Technology of Ministry of Education and Science of Kazakhstan, Almaty, Kazakhstan

H. Lim and D. Son
Kyungpook National University, Taegu, Korea

K. Piotrzkowski
Institut de Physique Nucléaire, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Departamento de Física Teórica, Universidad Autónoma de Madrid, Madrid, Spain

M. Barbi, F. Corriveau, S. Gliga, J. Lainesse, S. Padhi, D. G. Stairs, and R. Walsh
Department of Physics, McGill University, Montréal, Quebec, Canada H3A 2T8

T. Tsurugai
Meiji Gakuin University, Faculty of General Education, Yokohama, Japan

A. Antonov, P. Danilov, B. A. Dolgoshein, D. Gladkov, V. Sosnovtsev, and S. Suchkov
Moscow Engineering Physics Institute, Moscow, Russia

Moscow State University, Institute of Nuclear Physics, Moscow, Russia

N. Coppola, S. Grijpink, E. Koffeman, P. Kooijman, E. Maddox, A. Pellegrino, S. Schagen, H. Tiecke, J. J. Velthuis,
L. Wiggers, and E. de Wolf
NIKHEF and University of Amsterdam, Amsterdam, Netherlands

N. Brümmer, B. Bylsma, L. S. Durkin, and T. Y. Ling
Physics Department, Ohio State University, Columbus, Ohio 43210, USA

A. M. Cooper-Sarkar, A. Cottrell, R. C. E. Devenish, J. Ferrando, G. Grzelak, C. Gwenlan, S. Patel, M. R. Sutton,
and R. Walczak
Department of Physics, University of Oxford, Oxford, United Kingdom

A. Bertolin, R. Brugnera, R. Carlin, F. Dal Corso, S. Dusini, A. Garfagnini, S. Limentani, A. Longhini, A. Parenti,
M. Posocco, L. Stanco, and M. Turcato
Dipartimento di Fisica dell’ Università e INFN, Padova, Italy

E. A. Heaphy, F. Metlica, B. Y. Oh, and J. J. Whitmore
Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Y. Iga
Polytechnic University, Sagamihara, Japan

G. D’Agostini, G. Marini, and A. Nigro
Dipartimento di Fisica, Università “La Sapienza” and INFN, Rome, Italy

C. Cormack, J. C. Hart, and N. A. McCubbin
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, United Kingdom

C. Heusch
University of California, Santa Cruz, California 95064, USA

I. H. Park
Department of Physics, Ewha Womans University, Seoul, Korea

N. Pavel
Fachbereich Physik der Universität-Gesamthochschule Siegen, Germany

H. Abramowicz, A. Gabareen, S. Kananov, A. Kreisel, and A. Levy
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel-Aviv University, Tel-Aviv, Israel

M. Kuze
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

T. Abe, T. Fusayasu, S. Kagawa, T. Kohno, T. Tawara, and T. Yamashita
Department of Physics, University of Tokyo, Tokyo, Japan

R. Hamatsu, T. Hirose, M. Inuzuka, H. Kaji, S. Kitamura, K. Matsuzawa, and T. Nishimura
Department of Physics, Tokyo Metropolitan University, Tokyo, Japan

M. Arneodo, M. I. Ferrero, V. Monaco, M. Ruspa, R. Sacchi, and A. Solano
Università di Torino, Dipartimento di Fisica Sperimentale and INFN, Torino, Italy

T. Koop, G. M. Levman, J. F. Martin, and A. Mirea
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

J. M. Butterworth, R. Hall-Wilton, T. W. Jones, M. S. Lightwood, and C. Targett-Adams
Physics and Astronomy Department, University College London, London, United Kingdom

Warsaw University, Institute of Experimental Physics, Warsaw, Poland

M. Adamus and P. Plucinski
Institute for Nuclear Studies, Warsaw, Poland

Y. Eisenberg, L. K. Gladilin, D. Hochman, U. Karshon, and M. Riveline
Department of Particle Physics, Weizmann Institute, Rehovot, Israel

D. Kčira, S. Lammers, L. Li, D. D. Reeder, M. Rosin, A. A. Savin, and W. H. Smith
Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA

A. Deshpande, S. Dhawan, and P. B. Straub
Department of Physics, Yale University, New Haven, Connecticut 06520-8121, USA

S. Bhadra, C. D. Catterall, S. FourletoV, G. Hartner, S. Menary, M. Soares, and J. Standage
Department of Physics, York University, Ontario, Canada M3J 1P3

(ZEUS Collaboration)
(Received 1 September 2003; published 30 January 2004)
I. INTRODUCTION

Charm quarks are produced copiously in deep inelastic scattering (DIS) at the DESY ep collider HERA. At sufficiently high photon virtualities, Q^2, the production of charm quarks constitutes up to 30% of the total cross section [1,2]. Previous measurements of D^* cross sections [1-4] indicate that the production of charm quarks in DIS in the range $1 < Q^2 < 600$ GeV2 is consistent with calculations in quantum chromodynamics (QCD) in which charm is produced through the boson-gluon-fusion (BGF) mechanism. This implies that the charm cross section is directly sensitive to the gluon density in the proton.

In this paper, measurements of the D^* cross section are presented with improved precision and in a kinematic region extending to higher Q^2 than the previous ZEUS results [1]. Single differential cross sections have been measured as a function of Q^2 and the Bjorken scaling variable, x. Cross sections have also been measured in two Q^2 ranges as a function of transverse momentum, $p_T(D^*)$, and pseudorapidity, $\eta(D^*)$, of the D^* meson. The cross sections are compared to the predictions of leading-logarithmic Monte Carlo (MC) simulations and to a next-to-leading-order (NLO) QCD calculation using various parton density functions (PDFs) in the proton. In particular, the data are compared to calculations using the recent ZEUS NLO QCD fit [5], in which the parton densities in the proton are parametrized by performing fits to inclusive DIS measurements from ZEUS and fixed-target experiments. The cross-section measurements are used to extract the charm contribution, F_{2c}^D, to the proton structure function, F_2. DOI: 10.1103/PhysRevD.69.012004 PACS number(s): 13.60.Le, 12.38.Qk

II. EXPERIMENTAL SETUP

The analysis was performed with data taken from 1998 to 2000, when HERA collided electrons or positrons with energy $E_e = 27.5$ GeV with protons of energy $E_p = 920$ GeV. The results are based on $e^- p$ and $e^+ p$ samples corresponding to integrated luminosities of 16.7 ± 0.3 pb$^{-1}$ and 65.2 ± 1.5 pb$^{-1}$, respectively.1

A detailed description of the ZEUS detector can be found elsewhere [6]. A brief outline of the components that are most relevant for this analysis is given below.

Charged particles are tracked in the central tracking detector (CTD) [7], which operates in a magnetic field of 1.43 T provided by a thin superconducting solenoid. The CTD consists of 72 cylindrical drift chamber layers, organized in nine superlayers covering the polar-angle2 region $15^\circ < \theta < 164^\circ$. The transverse-momentum resolution for full-length tracks is $\sigma(p_T)/p_T = 0.0058 p_T \oplus 0.0065 \oplus 0.0014/p_T$, with p_T in GeV.2

1Hereafter, both electrons and positrons are referred to as electrons, unless explicitly stated otherwise.
2The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the proton beam direction, referred to as the “forward direction,” and the X axis pointing left towards the center of HERA. The coordinate origin is at the nominal interaction point.
The high-resolution uranium-scintillator calorimeter (CAL) [8] consists of three parts: the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeters. Each part is subdivided transversely into towers and longitudinally into one electromagnetic section (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections (HAC). The smallest subdivision of the calorimeter is called a cell. The CAL energy resolutions, as measured under test-beam conditions, are $\sigma(E)/E=0.18/\sqrt{E}$ for electrons and $\sigma(E)/E=0.35/\sqrt{E}$ for hadrons, with E in GeV.

Presamplers (PRES) [9] are mounted in front of FCAL, BCAL and RCAL. They consist of scintillator tiles which detect particles originating from showers in the material between the interaction point and the calorimeter. This information was used to correct the energy of the scattered electron. The position of electrons scattered close to the electron beam direction is determined by a scintillator strip detector (SRTD) [10]. The SRTD signals resolve single minimum-ionizing particles and provide a transverse position resolution of 3 mm.

The luminosity was measured from the rate of the bremsstrahlung process $e^{+}e^{-} \rightarrow e^{+}e^{-}\gamma\gamma$, where the photon was measured in a lead-scintillator calorimeter [11] placed in the HERA tunnel at $Z=-107$ m.

A three-level trigger system was used to select events online [6,12]. At the third level, events with both a reconstructed D^* candidate and a scattered-electron candidate were kept for further analysis. The efficiency of the online D^* reconstruction, determined relative to an inclusive DIS trigger, was generally above 95%.

III. THEORETICAL PREDICTIONS

A variety of models to describe charm production in DIS have been constructed, based on many theoretical ideas. A comparison of the data with these models is complicated by the need to produce predictions for the limited range of acceptance of the detector in $p_T(D^*)$ and $\eta(D^*)$. The calculation used in this paper to compare with the measured cross sections is based on NLO QCD as described in Sec. III A. Monte Carlo models also provide calculations in the measured kinematic region; those used are discussed in Sec. III B. Predictions of other models are briefly discussed in Sec. III C. Most of these models only predict the total cross sections and cannot therefore be directly compared with the current data.

A. NLO QCD calculations

The NLO predictions for $c\bar{c}$ cross sections were obtained using the HVQDIS program [13] based on the so-called fixed-flavor-number scheme (FFNS). In this scheme, only light quarks (u,d,s) are included in the initial-state proton as partons whose distributions obey the DGLAP equations [14], and the $c\bar{c}$ is produced via the BGF mechanism [15] with NLO corrections [16]. The presence of the two large scales, Q^2 and m_c^2, can spoil the convergence of the perturbative series because the neglected terms of orders higher than α_s^2 containing $\log(Q^2/m_c^2)$ factors which can become large. Therefore, the results of HVQDIS are expected to be most accurate at $Q^2 \sim m_c^2$ and to become less reliable when $Q^2 \gg m_c^2$.

The following inputs have been used to obtain the predictions for D^* production at NLO using the program HVQDIS. The recent ZEUS NLO QCD global fit [5] to structure-function data was used as the parametrization of the proton PDFs. This fit was repeated [17] in the FFNS, in which the PDF has three active quark flavors in the proton, and $\Lambda_{QCD}^{(3)}$ is set to 0.363 GeV. In this fit, the mass of the charm quark was set to 1.35 GeV; the same mass was therefore used in the HVQDIS calculation of the predictions. The renormalization and factorization scales were set to $\mu = \sqrt{Q^2+4m_c^2}$ for charm production both in the fit and in the HVQDIS calculation. The charm fragmentation to a D^* is carried out using the Peterson function [18]. The hadronization fraction, $f(c\rightarrow D^*)$, taken from combined e^+e^- measurements, was set to 0.235 [19] and the Peterson parameter, ϵ, was set to 0.035 [20]. The production cross section for charmonium states at HERA is larger than in high-energy e^+e^- collisions. The effect of J/ψ production on the hadronization fraction was estimated from data [21,22] to be 2% and was neglected.

As an alternative to the Peterson fragmentation function, corrections were applied to the partons in the NLO calculation using the AROMA MC program [23] (see Sec. III B) which uses the Lund string fragmentation [24], modified for heavy quarks according to Bowler [25], and leading-logarithmic parton showers. This correction was applied on a bin-by-bin basis to the NLO calculation for each cross section measured, according to the formula $d\sigma(D^*)_{\text{NLO}} = d\sigma(c\bar{c})_{\text{NLO}} C_{\text{had}}$ where $C_{\text{had}} = d\sigma(D^*)_{\text{MC}}/d\sigma(c\bar{c})_{\text{MC}}$. The shapes of the differential cross sections calculated at the parton level of the AROMA model agreed reasonably well with those calculated from the HVQDIS program. The effect of the choice of hadronization scheme is discussed in Secs. IX and X.

To estimate the contribution of beauty production, the NLO calculation and hadronization from the MC were combined, using $d\sigma(b\rightarrow D^*)_{\text{NLO}} = d\sigma(b\rightarrow D^*)_{\text{NLO}} C_{\text{had}}$ where $C_{\text{had}} = d\sigma(b\rightarrow D^*)_{\text{MC}}/d\sigma(b\rightarrow D^*)_{\text{MC}}$. The ZEUS NLO QCD fit was used as the proton PDF, so that the mass used in this fit, $m_b=4.3$ GeV, was also used in the HVQDIS program and μ was set to 0.173 [26].

An alternate way to describe charm production in QCD is the variable-flavor-number scheme (VFNS) [27,28]. In these calculations, an attempt is made to treat the heavy quarks correctly for all Q^2. Therefore, at low Q^2, charm is produced dynamically through the BGF process as in the FFNS, whereas, at higher Q^2, heavy-quark parton densities are introduced. The transition between the two extremes is treated in different ways by different authors [27,28]. The ZEUS NLO QCD fit has been performed in this scheme using the formalism of Roberts and Thorne [29,30]. Predictions from such calculations are, however, only available for the total charm cross section; no calculation of D^* production in the measured kinematic range is available.
FIG. 1. The distribution of the mass difference, $\Delta M = (M_{K^\pm \pi^\mp}, -M_{K^0})$, for D^0 candidates (solid dots). The ΔM distribution from wrong-charge combinations, normalized in the region $0.15 < \Delta M < 0.165$ GeV, is shown as the histogram. The solid line shows the result of the fit described in the text. The M_{K^0} distribution for the D^0 candidates in the range $0.143 < \Delta M < 0.148$ GeV is shown as an inset. The fit is the sum of a modified Gaussian to describe the signal and a second-order polynomial to describe the background.

B. Monte Carlo models of charm production

The MC programs AROMA and CASCADE [31] were also compared with the measured differential cross sections. In the AROMA MC program, charm is produced via the BGF process. Higher-order QCD effects are simulated in the leading-logarithmic approximation with initial- and final-state radiation obeying DGLAP evolution. The mass of the charm quark was set to 1.5 GeV and the proton PDF chosen was CTEQ5F3 [32]. The CASCADE MC model takes a different approach to the generation of the hard subprocess, in which heavy-quark production is simulated in the framework of the semihard or k_T-factorization approach [33,34]. The matrix element used in CASCADE is the off-shell LO BGF process [34,35]. The CASCADE initial-state radiation is based on CCFM evolution [36], which includes $\ln(1/x)$ terms in the perturbative expansion in addition to the $\ln Q^2$ terms used in DGLAP evolution. To simulate final-state radiation, CASCADE uses PYTHIA 5.7 [37]. The cross section is calculated by convoluting the off-shell BGF matrix element with the unintegrated gluon density of the proton obtained from the CCFM fit to the HERA F_2 data [38] with $m_c = 1.5$ GeV. For both AROMA and CASCADE, the Lund string model is used for the fragmentation into hadrons, and $f(c \to D^*)$ was set to 0.235.

C. Other predictions of charm production

The extraction of $F_2^{c\bar{c}}$ performed in this paper (see Sec. X) is model dependent and comparisons of $F_2^{c\bar{c}}$ to the predictions of models other than that used to produce it are not in general valid. Thus, only the FFNS model, which was used to extract $F_2^{c\bar{c}}$, was compared to the data.

Several models of charm production [39] were compared in the x and Q^2 range of the measurements in this paper. As most only predict total cross sections, the comparison was performed for $F_2^{c\bar{c}}$. All models show similar trends, with differences typically less than 20%. Since the differences are smaller than the current precision of the D^* cross-section measurements, these models are not considered further.

IV. KINEMATIC RECONSTRUCTION AND EVENT SELECTION

The kinematic variables Q^2, x and the fraction of the electron energy transferred to the proton in its rest frame, y, can be reconstructed using a variety of methods, whose accuracy depends on the variable of interest and its range:

(i) for the electron method (specified with the subscript e), the measured energy and angle of the scattered lepton are used;

(ii) the double angle (DA) method [40] relies on the angles of the scattered lepton and the hadronic energy flow;

(iii) the Jacquet-Blondel (JB) method [41] is based entirely on measurements of the hadronic system;

(iv) the Σ-method [42] uses both the scattered-lepton energy and measurements of the hadronic system.
The reconstruction of Q^2 and x was performed using the Σ method, since it has better resolution at low Q^2 than the DA method. At high Q^2, the Σ method and the DA method are similar, and both have better resolution than the electron method.

The events were selected \cite{1,43} by the following cuts:

(i) the scattered electron was identified using a neural-network procedure \cite{44}. Its energy, $E_{e'}$, was required to be larger than 10 GeV;

(ii) $y_{e'} < 0.95$;

(iii) $y_{\gamma} > 0.02$;

(iv) $40 \leq \delta \leq 60$ GeV, where $\delta = \Sigma_k E_k (1 - \cos \theta_k)$ and E_k is the energy of the calorimeter cell i. The sum runs over all cells;

(v) a primary vertex position determined from the tracks fitted to the vertex in the range $|Z_{\text{vertex}}| < 50$ cm;

(vi) the impact point (X, Y) of the scattered lepton on the RCAL must lie outside the region 26×14 cm2 centered on $X= Y= 0$.

The angle of the scattered lepton was determined using either its impact position on the CAL inner face or a reconstructed track in the CTD. The SRTD information was used, when available. The energy of the scattered lepton was corrected using the PRES, with additional corrections for non-uniformity due to geometric effects caused by cell and module boundaries. The quantity δ was calculated from a combination of CAL clusters and tracks measured in the CTD. The contribution to δ from the scattered lepton was evaluated separately after all corrections were applied as described above.

The selected kinematic region was $1.5 < Q^2 < 1000$ GeV2 and $0.02 < y < 0.7$.

V. SELECTION OF D^* CANDIDATES

The D^* mesons were identified using the decay channel $D^{*+} \rightarrow D^0 \pi^+$, with the subsequent decay $D^0 \rightarrow K^- \pi^+$ and the corresponding antiparticle decay, where π^+ refers to a low-momentum ("slow") pion accompanying the D^0.

Charged tracks measured by the CTD and assigned to the primary event vertex were selected. The transverse momentum was required to be greater than 0.12 GeV. Each track was required to reach at least the third superlayer of the CTD. These restrictions ensured that the track acceptance and momentum resolution were high. Tracks in the CTD with opposite charges and transverse momenta $p_T > 0.4$ GeV were combined in pairs to form D^0 candidates. The tracks were alternately assigned the masses of a kaon and a pion and the invariant mass of the pair, $M_{K\pi}$, was found. Each additional track, with charge opposite to that of the kaon track, was assigned the pion mass and combined with the D^0-meson candidate to form a D^* candidate.

The signal regions for the reconstructed masses, $M(D^0)$ and $\Delta M = (M_{K\pi^\pm} - M_{K\pi})$, were $1.80 < M(D^0) < 1.92$ GeV and $0.143 < \Delta M < 0.148$ GeV, respectively. To allow the background to be determined, D^0 candidates with wrong-sign combinations, in which both tracks forming the D^0 candidates have the same charge and the third track has the opposite charge, were also retained. The same kinematic restrictions were applied as for those D^0 candidates with correct-charge combinations.

The kinematic region for D^* candidates was $1.5 < p_T(D^*) < 15$ GeV and $|\eta(D^*)| < 1.5$. Figure 1 shows the ΔM distribution for the D^* candidates together with the background from the wrong-charge combinations. The fit to the distribution has the form

$$F = p_1 \exp(-0.5x^2 + 1.0(1+0.5\xi)) + p_3(\Delta M - m_{\pi})^p,$$

where $x = (\Delta M - m_{\pi})/p_3$, $p_1 - p_5$ are free parameters and m_{π} is the pion mass. The "modified" Gaussian was used to fit to the mass peak since it gave a better χ^2 value than the conventional Gaussian form for a MC sample of D^* mesons. The fit gives a peak at 145.49 ± 0.02 (stat) MeV compared with the PDG value of 145.421 ± 0.010 MeV \cite{45}. The measured peak position differs from the PDG value. However, it was not corrected for detector effects and the systematic un-
TABLE I. Measured differential cross sections as a function of Q^2, x, $p_T(D^*)$, and $\eta(D^*)$ for $1.5 < Q^2 < 1000$ GeV2, $0.02 < y < 0.7$, $1.5 < p_T(D^*) < 15$ GeV and $|\eta(D^*)| < 1.5$. The statistical and systematic uncertainties are shown separately. The ratio of the cross sections for $e^- p$ and $e^+ p$ data are also given with statistical and systematic uncertainties shown separately.

<table>
<thead>
<tr>
<th>Q^2 bin (GeV2)</th>
<th>$d\sigma/dQ^2$ (nb/GeV2)</th>
<th>Δ_{stat}</th>
<th>Δ_{syst}</th>
<th>$\sigma(e^- p)/\sigma(e^+ p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5, 5</td>
<td>1.18</td>
<td>± 0.05</td>
<td>$+0.08$</td>
<td>0.86 ± 0.10</td>
</tr>
<tr>
<td>5, 10</td>
<td>0.323</td>
<td>± 0.017</td>
<td>$+0.03$</td>
<td>1.20 ± 0.15</td>
</tr>
<tr>
<td>10, 20</td>
<td>0.130</td>
<td>± 0.007</td>
<td>$+0.001$</td>
<td>1.10 ± 0.13</td>
</tr>
<tr>
<td>20, 40</td>
<td>0.044</td>
<td>± 0.002</td>
<td>-0.002</td>
<td>1.20 ± 0.16</td>
</tr>
<tr>
<td>40, 80</td>
<td>0.012</td>
<td>± 0.001</td>
<td>$+0.001$</td>
<td>1.66 ± 0.26</td>
</tr>
<tr>
<td>80, 200</td>
<td>0.0022</td>
<td>± 0.0003</td>
<td>$+0.0003$</td>
<td>1.66 ± 0.41</td>
</tr>
<tr>
<td>200, 1000</td>
<td>0.00018</td>
<td>± 0.00004</td>
<td>-0.00008</td>
<td>1.53 ± 0.64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$p_T(D^*)$ bin (GeV)</th>
<th>$d\sigma/dp_T(D^*)$ (nb/GeV)</th>
<th>Δ_{stat}</th>
<th>Δ_{syst}</th>
<th>$\sigma(e^- p)/\sigma(e^+ p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5, 2.4</td>
<td>3.76</td>
<td>± 0.24</td>
<td>$+0.31$</td>
<td>1.26 ± 0.18</td>
</tr>
<tr>
<td>2.4, 3.1</td>
<td>2.64</td>
<td>± 0.13</td>
<td>-0.27</td>
<td>1.13 ± 0.12</td>
</tr>
<tr>
<td>3.1, 4.0</td>
<td>1.60</td>
<td>± 0.07</td>
<td>-0.13</td>
<td>1.11 ± 0.11</td>
</tr>
<tr>
<td>4.0, 6.0</td>
<td>0.59</td>
<td>± 0.02</td>
<td>-0.04</td>
<td>1.05 ± 0.10</td>
</tr>
<tr>
<td>6.0, 15</td>
<td>0.050</td>
<td>± 0.003</td>
<td>$+0.002$</td>
<td>1.14 ± 0.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\eta(D^*)$ bin</th>
<th>$d\sigma/d\eta(D^*)$ (nb)</th>
<th>Δ_{stat}</th>
<th>Δ_{syst}</th>
<th>$\sigma(e^- p)/\sigma(e^+ p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-1.5, -0.8$</td>
<td>2.12</td>
<td>± 0.12</td>
<td>$+0.09$</td>
<td>1.42 ± 0.17</td>
</tr>
<tr>
<td>$-0.8, -0.35$</td>
<td>2.92</td>
<td>± 0.14</td>
<td>$+0.08$</td>
<td>1.26 ± 0.13</td>
</tr>
<tr>
<td>$-0.35, 0.0$</td>
<td>2.71</td>
<td>± 0.17</td>
<td>$+0.13$</td>
<td>0.89 ± 0.15</td>
</tr>
<tr>
<td>0.0, 0.4</td>
<td>3.09</td>
<td>± 0.17</td>
<td>$+0.13$</td>
<td>0.92 ± 0.14</td>
</tr>
<tr>
<td>0.4, 0.8</td>
<td>3.17</td>
<td>± 0.18</td>
<td>$+0.11$</td>
<td>1.19 ± 0.16</td>
</tr>
<tr>
<td>0.8, 1.5</td>
<td>3.06</td>
<td>± 0.19</td>
<td>$+0.09$</td>
<td>1.16 ± 0.17</td>
</tr>
</tbody>
</table>

VI. ACCEPTANCE CORRECTIONS

The acceptances were calculated using the RAPGAP 2.08 [46] and HERWIG 6.1 [47] MC models. The RAPGAP MC model was interfaced with HERACLES 4.6.1 [48] in order to incorporate first-order electroweak corrections. The generated events were then passed through a full simulation of the detector, separately for $e^- p$ and $e^+ p$ running, using GEANT 3.13 [49] and processed and selected with the same programs as used for the data.

The MC models were used to produce charm by the BGF process only. The GRV94-LO [50] PDF for the proton was used, and the charm-quark mass was set to 1.5 GeV. The HERWIG MC contains leading-logarithmic parton showers whereas for RAPGAP MC, the color-dipole model [51] as implemented in ARIADNE 4.03 [51] was used to simulate...
The RAPGAP predictions are in good agreement with the data. Fragmentation are normalized to unit area, are shown separately for two HERWIG MC gives a similarly good representation of the data. The ranges. This good description gives confidence in the use of QCD radiation. Charm fragmentation is implemented using the RAPGAP MC to correct the data for detector effects. The description is similarly good for the two statistical and systematic uncertainties added in quadrature. Predictions compared to the NLO QCD calculation of HVDQS. The inner error bands show the statistical uncertainties and the outer bars show the QCD prediction are also shown beneath each plot.

![Image](image_url)

FIG. 4. Differential D^* cross sections, for e^-p and e^+p data combined, as a function of (a) Q^2, (b) x, (c) $p_T(D^*)$ and (d) $\eta(D^*)$ compared to the NLO QCD calculation of HVDQS. The inner error bars show the statistical uncertainties and the outer bars show the statistical and systematic uncertainties added in quadrature. Predictions from the ZEUS NLO QCD fit are shown for $m_z=135$ GeV (solid line) with its associated uncertainty (shaded band) as discussed in the text. Predictions using the CTEQ5F3 PDF (dashed-dotted line) and an alternative hadronization scheme (dotted line) are displayed. The ratios of the cross sections to the central HVDQS prediction are also shown beneath each plot.

QCD radiation. Charm fragmentation is implemented using either the Lund string fragmentation (RAPGAP) or a cluster fragmentation [52] model (HERWIG).

Figure 2 shows distributions of DIS variables for D^* events (after background subtraction) for data compared to detector-level RAPGAP predictions. The distributions, which are normalized to unit area, are shown separately for two Q^2 intervals: $1.5<Q^2<1000$ GeV2 and $40<Q^2<1000$ GeV2. The RAPGAP predictions are in good agreement with the data distributions for both the scattered-lepton and hadronic variables. The description is similarly good for the two Q^2 ranges. This good description gives confidence in the use of the RAPGAP MC to correct the data for detector effects. The HERWIG MC gives a similarly good representation of the data (not shown) and is used to estimate the systematic uncertainty, arising from the model in the correction procedure, as described in Sec. VIII.

The cross sections for a given observable Y were determined using

$$\frac{d\sigma}{dY} = \frac{N}{A \cdot \mathcal{L} \cdot B \cdot \Delta Y}.$$

where N is the number of D^* events in a bin of size ΔY, A is the acceptance (which takes into account migrations, efficiencies and QED radiative effects for that bin) and \mathcal{L} is the integrated luminosity. The product, B, of the appropriate branching ratios for the D^* and D^0 was set to (2.57 ± 0.06)% [45].

VII. D* RATES IN e⁻p AND e⁺p INTERACTIONS

The D^* production rate, $r = N/\mathcal{L}$, in the e^-p data set is systematically higher than that in the e^+p data set. This difference increases with Q^2; for example, the ratio of the rates, r_{e^-p/e^+p}, is equal to 1.12 ± 0.06 for $1.5<Q^2<1000$ GeV2, while for $40<Q^2<1000$ GeV2 it is 1.67 ± 0.21 (only statistical errors are given). Such a difference in production cross sections is not expected from known physics processes.

A detailed study was performed to understand whether any instrumental effects could account for the difference between the two data sets. No such effect was seen in inclusive DIS where the ratio of e^-p to e^+p rates is consistent with unity. The rate for the wrong-charge background under the D^* mass peak in e^-p data agreed well with the wrong-charge rate in e^+p data. For example, for $Q^2>40$ GeV2, where the largest difference exists, the ratio of the rates for wrong-charge track combinations in e^-p and e^+p data is 0.95 ± 0.09. For both e^-p and e^+p interactions, the number of D^{*-} mesons was consistent with the number of $D^{(*)}$ for the entire Q^2 range studied. Different reconstruction methods, cuts, background-subtraction methods and the time dependence of the difference were also investigated. None of these checks gave an indication of the source of the observed difference between the $D^{(*)}_1$ rates in e^-p and e^+p for $Q^2>40$ GeV2. The cross sections were measured separately for e^-p and e^+p data and are discussed in Sec. IX. The difference in observed rate is assumed to be a statistical fluctuation and the two sets of data were combined for the final results.

VIII. EXPERIMENTAL AND THEORETICAL UNCERTAINTIES

A. Experimental uncertainties

The systematic uncertainties of the measured cross sections were determined by changing the selection cuts or the analysis procedure in turn and repeating the extraction of the cross sections [53]. The following systematic studies have been carried out (the resulting uncertainty on the total cross section is given in parentheses):

1. Event reconstruction and selection ($\pm 2.3\%$). The following systematic checks were performed for this category: the cut on y_e was changed to $y_e \leq 0.90$; the cut on y_B was changed to $y_B \leq 0.03$; the cut on δ was changed to $42 \leq \delta \leq 57$ GeV; the cut on the $|Z_{\text{vertex}}|$ was changed to $|Z_{\text{vertex}}|$...
TABLE II. Measured differential cross sections as a function of Q^2, x, $p_T(D^*)$ and $\eta(D^*)$ for $40 < Q^2 < 1000$ GeV2, $0.02 < y < 0.7$, $1.5 < p_T(D^*) < 15$ GeV and $|\eta(D^*)| < 1.5$. The statistical and systematic uncertainties are shown separately.

<table>
<thead>
<tr>
<th>$p_T(D^*)$ bin (GeV)</th>
<th>$\frac{d\sigma}{dp_T(D^*)}$ (nb/GeV)</th>
<th>Δ_{stat}</th>
<th>Δ_{syst}</th>
<th>$\sigma(e^- p)/\sigma(e^+ p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ZEUS Collaboration)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5, 2.4</td>
<td>0.117</td>
<td>± 0.055</td>
<td>$+0.065$</td>
<td>$3.29\pm 2.97^{+1.39}_{-2.44}$</td>
</tr>
<tr>
<td>2.4, 3.1</td>
<td>0.190</td>
<td>± 0.040</td>
<td>$+0.023$</td>
<td>$2.75\pm 1.10^{+0.55}_{-0.76}$</td>
</tr>
<tr>
<td>3.1, 4.0</td>
<td>0.188</td>
<td>± 0.024</td>
<td>$+0.026$</td>
<td>$1.72\pm 0.44^{+0.37}_{-0.26}$</td>
</tr>
<tr>
<td>4.0, 6.0</td>
<td>0.110</td>
<td>± 0.011</td>
<td>$+0.008$</td>
<td>$1.25\pm 0.30^{+0.20}_{-0.13}$</td>
</tr>
<tr>
<td>6.0, 15</td>
<td>0.024</td>
<td>± 0.002</td>
<td>$+0.001$</td>
<td>$1.25\pm 0.23^{+0.07}_{-0.05}$</td>
</tr>
<tr>
<td>$\eta(D^*)$ bin</td>
<td>$\frac{d\sigma}{d\eta(D^*)}$ (nb)</td>
<td>Δ_{stat}</td>
<td>Δ_{syst}</td>
<td>$\sigma(e^- p)/\sigma(e^+ p)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 0.8</td>
<td>0.161</td>
<td>± 0.032</td>
<td>$+0.033$</td>
<td>$1.25\pm 0.62^{+0.46}_{-0.22}$</td>
</tr>
<tr>
<td>± 0.35</td>
<td>0.317</td>
<td>± 0.043</td>
<td>$+0.039$</td>
<td>$1.29\pm 0.40^{+0.26}_{-0.32}$</td>
</tr>
<tr>
<td>± 0.0</td>
<td>0.349</td>
<td>± 0.046</td>
<td>$+0.061$</td>
<td>$1.26\pm 0.39^{+0.27}_{-0.24}$</td>
</tr>
<tr>
<td>± 0.0</td>
<td>0.298</td>
<td>± 0.048</td>
<td>$+0.066$</td>
<td>$1.41\pm 0.45^{+0.16}_{-0.44}$</td>
</tr>
<tr>
<td>± 0.0</td>
<td>0.338</td>
<td>± 0.051</td>
<td>$+0.036$</td>
<td>$2.12\pm 0.65^{+0.33}_{-0.41}$</td>
</tr>
<tr>
<td>± 0.15</td>
<td>0.310</td>
<td>± 0.047</td>
<td>$+0.074$</td>
<td>$2.13\pm 0.60^{+0.40}_{-0.62}$</td>
</tr>
</tbody>
</table>

<45 cm; the cut on E_{tr} was changed to $E_{tr} > 11$ GeV; the cut on the position of the scattered lepton in the RCAL was increased by 1 cm; the electron method was used, except for cases when the scattered-lepton track was reconstructed by the CTD. In the latter case, the DA method, which has the best resolution at high Q^2, was used; the energy of the scattered electron was raised and lowered by 1% in the MC only, to account for the uncertainty in the CAL energy scale; the energy of the hadronic system was raised and lowered by 3% in the MC only, to account for the uncertainty in the hadronic CAL energy scale; the reconstructed SRTD hit position was shifted by ± 2 mm to account for the uncertainty in the SRTD-RCAL alignment.

(ii) Uncertainties related to the D^* reconstruction ($^{+2.9 \%}_{-1.6 \%}$). The following systematic checks were performed for this category: tracks were required to have $|\eta| < 1.75$, in addition to the requirement on the number of superlayers; the cut on the minimum transverse momentum for the π and K candidates was raised and lowered by 0.1 GeV; the cut on the minimum transverse momentum for the π_s was raised and lowered by 0.02 GeV; the signal region for the $M(D^0)$ was widened and lowered symmetrically around the center by 0.01 GeV; the signal region for the ΔM was widened symmetrically around the center by 0.003 GeV.

(iii) The acceptance was determined using HERWIG instead of RAPGAP (-2.7%).

(iv) The uncertainty in the luminosity measurement (2.2%).

The cross section obtained using the fit was in good agreement with that obtained by subtracting the background using the wrong-charge candidates. These estimations were also made in each bin in which the differential cross sections were measured. The overall systematic uncertainty was determined by adding the above uncertainties in quadrature. The normalization uncertainties due to the luminosity-measurement error, and those due to the D^* and D^0 decay branching ratios of 2.5% [45], were not included in the systematic uncertainties for the differential cross sections.

B. Theoretical uncertainties

The NLO QCD predictions for D^* production are affected by the systematic uncertainties listed below. Typical values for the systematic uncertainty are quoted for the total cross section:

(i) The proton PDF. The CTEQ5F3 and GRV98-HO [54] PDFs were used to check the sensitivity of the predictions to different parametrizations of the gluon density in the proton. The appropriate masses used in the fit to determine the PDF were also used in HVQDIS, i.e., 1.3 GeV for CTEQ5F3 and 1.4 GeV for GRV98-HO. The change in the cross section was $+2.0 \%$ using CTEQ5F3 and -16% using GRV98-HO.

(ii) The mass of the charm quark ($^{+9.1 \%}_{-3.4 \%}$). The charm mass was changed consistently in the PDF fit and in HVQDIS by ± 0.15 GeV. The largest effect was at low $p_T(D^*)$.

(iii) The renormalization and factorization scale, μ ($^{+4 \%}_{-1 \%}$). The scale was changed by a factor of 0.5 and 2; another scale, μ_m, was also used [13]. The maximum of $\sqrt{Q^2/m^* + m^2}$ and μ_m, as a function of Q^2 was taken as the scale to estimate the upward uncertainty.

(iv) The ZEUS PDF uncertainties propagated from the experimental uncertainties of the fitted data ($\pm 5 \%$). The change in the cross section was independent of the kinematic region.

(v) Uncertainty in the fragmentation ($^{+6 \%}_{-5 \%}$). The parameter e in the Peterson fragmentation function was changed by ± 0.015.

The first source of systematic uncertainty is shown separately in the figures. The last four were added in quadrature and displayed as a band in the figures. An additional normalization uncertainty of 3% [19] on the hadronization fraction $f(c \to D^*)$ is not shown.
IX. CROSS-SECTION MEASUREMENTS

A. Visible cross sections

The overall acceptance after applying the selection criteria described in Secs. IV and V for $1.5 < Q^2 < 1000 \text{ GeV}^2$, $0.02 < y < 0.7$, $1.5 < p_T(D^*) < 15 \text{ GeV}$ and $|\eta(D^*)| < 1.5$ calculated with RAPGAP is 31%, both for e^-p and e^+p data. The total cross sections in the same region are

$$
\sigma(e^-p \rightarrow e^-D^*X) = 9.37 \pm 0.44(\text{stat})^{+0.59}_{-0.52}(\text{syst}) \text{ nb},
$$

$$
\sigma(e^+p \rightarrow e^+D^*X) = 8.20 \pm 0.22(\text{stat})^{+0.39}_{-0.36}(\text{syst}) \pm 0.20(\text{BR}) \text{ nb},
$$

where the final uncertainty arises from the uncertainty on the branching ratios for the D^* and D^0. The D^* cross section for e^+p data is consistent with the previously published result [1] obtained at a proton beam energy of 820 GeV. According to HVQDIS, a 5% increase in the D^* cross section is expected when the proton energy increases from 820 to 920 GeV.

The cross section obtained from the combined sample is

$$
\sigma(e^\pm p \rightarrow e^\pm D^*X) = 8.44 \pm 0.20(\text{stat})^{+0.37}_{-0.36}(\text{syst}) \pm 0.21(\text{BR}) \text{ nb}.
$$

The prediction from the HVQDIS program is $8.41^{+1.09}_{-0.95}$ nb, in good agreement with the data. The uncertainty in the HVQDIS prediction arises from the sources discussed in Sec. VIII B (excluding that from using a different proton PDF) and is about 2.5 times the size of the uncertainty in the measurement. A contribution to the total cross sections arises from D^* mesons produced in $b\bar{b}$ events. The D^* cross section...
TABLE III. Measured cross sections in each of the Q^2 and y bins for $1.5<Q^2<1000$ GeV2, $0.02<y<0.7$, $1.5<p_T(D^*)<15$ GeV and $|\eta(D^*)|<1.5$. The statistical and systematic uncertainties are shown separately. The prediction for the $\sigma_{b\bar{b}}^{bb}(D^*)$ contribution from HVQDIS, which was subtracted from the data in the extraction of F_{2}^{c}, is also shown.

<table>
<thead>
<tr>
<th>Q^2 bin (GeV2)</th>
<th>y bin</th>
<th>σ</th>
<th>Δ_{stat}</th>
<th>Δ_{syst} (nb)</th>
<th>$\sigma_{\text{b\bar{b}}}(D^*)$ (nb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5, 3.5</td>
<td>0.70, 0.33</td>
<td>0.655</td>
<td>± 0.073</td>
<td>$+0.128$</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>0.33, 0.18</td>
<td>0.842</td>
<td>± 0.070</td>
<td>$+0.006$</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>0.18, 0.09</td>
<td>0.974</td>
<td>± 0.064</td>
<td>$+0.058$</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>0.09, 0.02</td>
<td>0.648</td>
<td>± 0.048</td>
<td>$+0.059$</td>
<td>0.002</td>
</tr>
<tr>
<td>3.5, 6.5</td>
<td>0.70, 0.33</td>
<td>0.340</td>
<td>± 0.041</td>
<td>$+0.025$</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>0.33, 0.18</td>
<td>0.379</td>
<td>± 0.034</td>
<td>$+0.030$</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>0.18, 0.08</td>
<td>0.527</td>
<td>± 0.034</td>
<td>$+0.027$</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>0.08, 0.02</td>
<td>0.365</td>
<td>± 0.025</td>
<td>$+0.021$</td>
<td>0.001</td>
</tr>
<tr>
<td>6.5, 9.0</td>
<td>0.70, 0.25</td>
<td>0.301</td>
<td>± 0.031</td>
<td>$+0.030$</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>0.25, 0.08</td>
<td>0.384</td>
<td>± 0.025</td>
<td>$+0.055$</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>0.08, 0.02</td>
<td>0.156</td>
<td>± 0.014</td>
<td>$+0.017$</td>
<td>0.001</td>
</tr>
<tr>
<td>9.0, 14</td>
<td>0.70, 0.35</td>
<td>0.225</td>
<td>± 0.031</td>
<td>$+0.032$</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>0.35, 0.20</td>
<td>0.240</td>
<td>± 0.023</td>
<td>$+0.047$</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>0.20, 0.08</td>
<td>0.314</td>
<td>± 0.022</td>
<td>$+0.002$</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0.08, 0.02</td>
<td>0.180</td>
<td>± 0.015</td>
<td>$+0.014$</td>
<td>0.001</td>
</tr>
<tr>
<td>14, 22</td>
<td>0.70, 0.35</td>
<td>0.130</td>
<td>± 0.022</td>
<td>$+0.043$</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>0.35, 0.20</td>
<td>0.155</td>
<td>± 0.017</td>
<td>$+0.061$</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0.20, 0.08</td>
<td>0.263</td>
<td>± 0.016</td>
<td>$+0.022$</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0.08, 0.02</td>
<td>0.150</td>
<td>± 0.013</td>
<td>$+0.024$</td>
<td>0.003</td>
</tr>
<tr>
<td>22, 44</td>
<td>0.70, 0.35</td>
<td>0.226</td>
<td>± 0.026</td>
<td>$+0.027$</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>0.35, 0.22</td>
<td>0.193</td>
<td>± 0.015</td>
<td>$+0.018$</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>0.22, 0.08</td>
<td>0.261</td>
<td>± 0.018</td>
<td>$+0.010$</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>0.08, 0.02</td>
<td>0.182</td>
<td>± 0.013</td>
<td>$+0.016$</td>
<td>0.002</td>
</tr>
<tr>
<td>44, 90</td>
<td>0.70, 0.28</td>
<td>0.141</td>
<td>± 0.020</td>
<td>$+0.004$</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>0.28, 0.14</td>
<td>0.133</td>
<td>± 0.013</td>
<td>$+0.015$</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>0.14, 0.02</td>
<td>0.130</td>
<td>± 0.013</td>
<td>$+0.010$</td>
<td>0.004</td>
</tr>
<tr>
<td>90, 200</td>
<td>0.70, 0.28</td>
<td>0.060</td>
<td>± 0.014</td>
<td>$+0.019$</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>0.28, 0.14</td>
<td>0.076</td>
<td>± 0.011</td>
<td>$+0.003$</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0.14, 0.02</td>
<td>0.044</td>
<td>± 0.008</td>
<td>$+0.020$</td>
<td>0.001</td>
</tr>
<tr>
<td>200, 1000</td>
<td>0.70, 0.23</td>
<td>0.087</td>
<td>± 0.016</td>
<td>$+0.007$</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>0.23, 0.02</td>
<td>0.050</td>
<td>± 0.011</td>
<td>$+0.006$</td>
<td>0.001</td>
</tr>
</tbody>
</table>

arising from $b\bar{b}$ production was estimated, as described in Sec. III, to be 0.17 nb for $Q^2>1.5$ GeV2. The measured differential cross sections include a component from beauty production. Therefore, all NLO predictions include a $b\bar{b}$ contribution calculated in each bin. For the extraction of F_{2}^{c}, the predicted value of $b\bar{b}$ production was subtracted from the data.

B. Differential cross-section measurements

The differential D^* cross sections as a function of Q^2, x, $p_T(D^*)$ and $\eta(D^*)$ for the combined e^-p and e^+p data samples are shown in Fig. 3 and given in Table I. The cross sections in Q^2 and x both fall by about four orders of magnitude in the measured region. The cross section $d\sigma/dp_T(D^*)$ falls by two orders of magnitude with increasing $p_T(D^*)$. The cross section $d\sigma/d\eta(D^*)$ rises with increasing $\eta(D^*)$. The ratio of the e^-p and e^+p cross sections, also shown in Fig. 3 and given in Table I, tends to increase with increasing Q^2 and x. Neither the NLO calculations nor the MCs based on LO matrix elements and parton showers depend on the charge of the lepton in ep interactions.

The data in Fig. 3 are compared with predictions from the MC generators AROMA and CASCADE. The prediction from AROMA is generally below the data, particularly at low Q^2 and medium to high $p_T(D^*)$. In contrast, the prediction from CASCADE, agrees at low Q^2, but generally lies above the data. Both MC predictions describe the shapes of the cross sections $d\sigma/dx$ and $d\sigma/d\eta(D^*)$ reasonably well. The uncertainties in these MC predictions are difficult to estimate and may be large.

In Fig. 4, the same data are compared with the NLO calculation implemented in the HVQDIS program. The predictions used the default parameter settings as discussed in Sec.
though HVQDIS is expected to be most accurate when cross sections as a function of Q^2 and x value. The statistical, systematic and theoretical uncertainties are shown separately. The values of the extrapolation factor used to correct the full $p_T(D^*)$ and $\eta(D^*)$ phase space are also shown. The value of the proton structure function, F_2, from the ZEUS NLO QCD fit used to extract the ratio F_{2*}/F_2, is also given.

<table>
<thead>
<tr>
<th>Q^2 (GeV2)</th>
<th>x</th>
<th>F_{2*}^2</th>
<th>Δ_{stat}</th>
<th>Δ_{syst}</th>
<th>Δ_{theo}</th>
<th>Extrapolation factor</th>
<th>F_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.00003</td>
<td>0.124</td>
<td>±0.014</td>
<td>+0.025</td>
<td>+0.009</td>
<td>4.17</td>
<td>0.983</td>
</tr>
<tr>
<td>4</td>
<td>0.00007</td>
<td>0.110</td>
<td>±0.009</td>
<td>-0.019</td>
<td>-0.017</td>
<td>3.02</td>
<td>0.817</td>
</tr>
<tr>
<td>11</td>
<td>0.00018</td>
<td>0.094</td>
<td>±0.006</td>
<td>+0.006</td>
<td>+0.003</td>
<td>3.07</td>
<td>0.672</td>
</tr>
<tr>
<td>7</td>
<td>0.00035</td>
<td>0.046</td>
<td>±0.003</td>
<td>-0.016</td>
<td>-0.011</td>
<td>3.07</td>
<td>0.672</td>
</tr>
<tr>
<td>18</td>
<td>0.00018</td>
<td>0.257</td>
<td>±0.027</td>
<td>+0.026</td>
<td>+0.014</td>
<td>4.72</td>
<td>0.591</td>
</tr>
<tr>
<td>30</td>
<td>0.00060</td>
<td>0.159</td>
<td>±0.011</td>
<td>+0.008</td>
<td>+0.021</td>
<td>2.34</td>
<td>0.907</td>
</tr>
<tr>
<td>60</td>
<td>0.00150</td>
<td>0.077</td>
<td>±0.007</td>
<td>-0.004</td>
<td>-0.000</td>
<td>3.11</td>
<td>0.737</td>
</tr>
<tr>
<td>130</td>
<td>0.00300</td>
<td>0.267</td>
<td>±0.019</td>
<td>+0.010</td>
<td>+0.004</td>
<td>2.34</td>
<td>0.724</td>
</tr>
<tr>
<td>500</td>
<td>0.01200</td>
<td>0.338</td>
<td>±0.065</td>
<td>+0.020</td>
<td>+0.021</td>
<td>3.93</td>
<td>0.652</td>
</tr>
</tbody>
</table>

TABLE IV. The extracted values of F_{2*}^2 at each Q^2 and x value. The statistical, systematic and theoretical uncertainties are shown separately. The values of the extrapolation factor used to correct the full $p_T(D^*)$ and $\eta(D^*)$ phase space are also shown. The value of the proton structure function, F_2, from the ZEUS NLO QCD fit used to extract the ratio F_{2*}/F_2, is also given.

III, with the uncertainties described in Sec. VIII.B. Predictions using an alternate PDF, CTEQ5F3, and an alternate hadronization scheme, from AROMA, are also shown. The differences between the predictions, which are comparable to the uncertainties in the data, demonstrate the sensitivity of the description to the gluon distribution in the proton. The ratio of data to theory is displayed for each variable. For the cross sections as a function of Q^2 and x, the NLO predictions provide a reasonable description of the data over four orders of magnitude in the cross section. For $d\sigma/dQ^2$, the description of the data is similar over the whole range in Q^2, even though HVQDIS is expected to be most accurate when $Q^2 \sim m_t^2$. The NLO calculation, however, exhibit a somewhat different shape, particularly for $d\sigma/dx$, where the NLO is below the data at low x and above the data at high x. The predictions using CTEQ5F3 instead of the ZEUS NLO fit, or using AROMA for the hadronization instead of the Peterson function, give better agreement with the data for the cross section $d\sigma/dx$.

The cross sections as a function of $p_T(D^*)$ and $\eta(D^*)$ are also reasonably well described by the NLO calculation. The prediction using the ZEUS NLO QCD fit gives a better description than that using CTEQ5F3 (and also better than the prediction using GRV98-HO, not shown), especially for the cross section $d\sigma/d\eta(D^*)$. A better description of $d\sigma/d\eta(D^*)$ is also achieved [55] by using AROMA for the hadronization, although, in this case, $d\sigma/dp_T(D^*)$ is not so well described. It should be noted that previous publications [1,2] revealed discrepancies in the forward $\eta(D^*)$ direction. This region can now be reasonably well described by a recent fit to the proton PDF as shown in Fig. 4(d). The data presented here are practically independent of the data used in the ZEUS NLO PDF fit to inclusive DIS data. Further refinement of NLO QCD fits and even the use of these data in
future fits may achieve a better description.

Cross sections as a function of \(\eta(D^*) \) and \(p_T(D^*) \) were also measured for \(Q^2 > 40 \text{ GeV}^2 \). The combined \(e^- p \) and \(e^+ p \) data samples are given in Table II and shown in Fig. 5 compared with the HVQDIS predictions. Although the HVQDIS calculation is not thought to be applicable at high \(Q^2 \), the data are well described. The high-\(Q^2 \) region is also where the difference in \(e^- p \) and \(e^+ p \) data is most pronounced; the ratios of the cross sections are given in Table II.

\section*{X. Extraction of \(F_2^{c\bar{c}} \)}

The open-charm contribution, \(F_2^{c\bar{c}} \), to the proton structure-function \(F_2 \) can be defined in terms of the inclusive double-differential \(c\bar{c} \) cross section in \(x \) and \(Q^2 \) by

\[
\frac{d^2\sigma^{c\bar{c}}(x,Q^2)}{dx\,dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[1 + (1-y)^2 \right] F_2^{c\bar{c}}(x,Q^2) - y^2 F_L^{c\bar{c}}(x,Q^2). \tag{1}
\]

In this paper, the \(c\bar{c} \) cross section is obtained by measuring the \(D^* \) production cross section and employing the hadronization fraction \(f(c\rightarrow D^*) \) to derive the total charm cross section. Since only a limited kinematic region is accessible for the measurement of \(D^* \) mesons, a prescription for extrapolating to the full kinematic phase space is needed. Since the structure function varies only slowly, it is assumed to be constant within a given \(Q^2 \) and \(y \) bin. Thus, the measured \(F_2^{c\bar{c}} \) in a bin \(i \) is given by

\[
F_{2,\text{meas}}^{c\bar{c}}(x_i,Q_i^2) = \frac{\sigma_{i,\text{meas}}(e+D^*)}{\sigma_{i,\text{theo}}(e+D^*)} F_{2,\text{theo}}^{c\bar{c}}(x_i,Q_i^2), \tag{2}
\]

where \(\sigma_i \) are the cross sections in bin \(i \) in the measured region of \(p_T(D^*) \) and \(\eta(D^*) \). The value of \(F_{2,\text{theo}}^{c\bar{c}} \) was calculated from the NLO coefficient functions [5]. The functional form of \(F_{2,\text{theo}}^{c\bar{c}} \) was used to quote the results for \(F_2^{c\bar{c}} \) at convenient values of \(x_i \) and \(Q_i^2 \) close to the center-of-gravity of the bin. In this calculation, the same parton densities, charm mass (\(m_c = 1.35 \text{ GeV} \)), and factorization and renormalization scales (\(\sqrt{4m_c^2 + Q^2} \)) have been used as for the HVQDIS calculation of the differential cross sections. The hadronization was performed using the Peterson fragmentation function.

The beauty contribution was subtracted from the data using the theoretical prediction as described in Sec. III. At low \(Q^2 \) and high \(x \), this fraction is small but it increases with increasing \(Q^2 \) and decreasing \(x \). For the lower \(x \) point at highest \(Q^2 \), the contribution from beauty production is about 7\% of that due to charm production. The contribution to the total cross section from \(F_2^{c\bar{c}} \) calculated using the ZEUS NLO fit is, on average, 1.3\% and at most 4.7\% and is taken into account in the extraction of \(F_2^{c\bar{c}} \). The size of the contribution from \(F_L \) is similar to that in other PDFs.

Cross sections in the measured \(D^* \) region and in the \(Q^2 \) and \(y \) kinematic bins of Table III were extrapolated to the full \(p_T(D^*) \) and \(\eta(D^*) \) phase space using HVQDIS. These bins correspond to the \(Q^2 \) and \(x \) values given in Table IV, where the \(F_2^{c\bar{c}} \) measurements are given. Typical extrapolation factors are between 4.7 at low \(Q^2 \) and 1.5 at high \(Q^2 \), as in Table IV. The following uncertainties of the extrapolation were evaluated.

Using the AROMA fragmentation correction instead of the Peterson fragmentation yielded changes of typically less than 10\% and not more than 20\%. Although these values are not very significant compared to the uncertainties in the data, the two corrections do produce a noticeable change in the shape of the cross section as a function of \(x \). The most significant effects are in the highest \(x \) bins for a given \(Q^2 \).

Changing the charm mass by \(\pm 0.15 \text{ GeV} \) consistently in the HVQDIS calculation and in the calculation of \(F_2^{c\bar{c}} \) leads to differences in the extrapolation of 5\% at low \(x \); the value decreases rapidly to higher \(x \).

Using the upper and lower predictions given by the uncertainty in the ZEUS NLO PDF fit, propagated from the experimental uncertainties of the fitted data, to perform the extraction of \(F_2^{c\bar{c}} \) gives similar values to the central measurement, with deviations typically less than 1\%.
Changing the contribution of beauty events subtracted from the data by $2\pm 50\%$ gave an uncertainty of typically $1\sim 2\%$ and up to 8% at low x and high Q^2.

These uncertainties were added in quadrature with the experimental systematic uncertainties when displayed in the figures and are given separately in Table IV. Extrapolating the cross sections to the full D^* phase space using the CTEQ5F3 proton PDF yielded differences compared to the ZEUS NLO QCD fit of less than 5% for $Q^2<11\text{ GeV}^2$ and less than 10% for $Q^2<1\text{ GeV}^2$.

The data are compared in Fig. 6 with the previous measurement and with the ZEUS NLO QCD fit. The two sets of data are consistent. The prediction describes the data well for all Q^2 and x except for the lowest Q^2, where some difference is observed. The uncertainty on the theoretical prediction is that from the PDF fit propagated from the experimental uncertainties of the fitted data. At the lowest Q^2, the uncertainty in the data is comparable to the PDF uncertainty shown. This implies that the double-differential cross sections given in Table III could be used as an additional constraint on the gluon density in the proton.

The values of F_2^c are presented as a function of Q^2 at fixed values of x and compared with the ZEUS NLO QCD fit in Fig. 7. The data rise with increasing Q^2, with the rise becoming steeper at lower x, demonstrating the property of scaling violation in charm production. The data are well described by the prediction.

Figure 8 shows the ratio F_2^c/F_2 as a function of x at fixed values of Q^2. The values of F_2 used to determine the ratio were taken from the ZEUS NLO QCD fit at the same values of Q^2 and x at which F_2^c is quoted, and are given in Table IV. The ratio F_2^c/F_2 rises from 10% to 30% as Q^2 increases and x decreases.

XI. CONCLUSIONS

The production of D^* mesons has been measured in deep inelastic scattering at HERA in the kinematic region 1.5
<Q^2<1000 GeV^2, \ 0.02<y<0.7, 1.5<p_T(D^*)<15 GeV and |\eta(D^*)|<1.5. The data extend the previous analysis to higher Q^2 and have increased precision.

Predictions from the CASCADE MC underestimate, and those from the CASCADE MC overestimate, the measured cross sections. Predictions from NLO QCD are in reasonable agreement with the measured cross sections, which show sensitivity to the choice of PDF and hence the gluon distribution in the proton. The ZEUS NLO PDF, which was fit to recent inclusive DIS data, gives the best description of the D^+ data. In particular, this is seen in the cross-section d\sigma/dQ^2. The double-differential cross section in y and Q^2 has been measured and used to extract the open-charm contribution to F_2, by using the NLO QCD calculation to extrapolate outside the measured p_T(D^*) and \eta(D^*) region. Since, at low Q^2, the uncertainties of the data are comparable to those from the PDF fit, the measured differential cross sections in y and Q^2 should be used in future fits to constrain the gluon density.

ACKNOWLEDGMENTS

The strong support and encouragement of the DESY Directorate have been invaluable, and we are much indebted to the HERA machine group for their inventiveness and diligent efforts. The design, construction, and installation of the ZEUS detector have been made possible by the ingenuity and dedicated efforts of many people from inside DESY and from the home institutes who are not listed as authors. Their contributions are acknowledged with great appreciation. We thank J. Collins, B. Harris, G. Ingelman, and R. Thorne for useful discussions. We also thank A. Donnachie, P. V. Landshoff, K. Golec-Biernat, A. V. Kiselev, V. A. Petrov, A. V. Berezhnoy, and A. K. Likhoded for providing us with their predictions. E. Rodrigues and R. Gonçalo are supported by the Portuguese Foundation for Science and Technology (FCT). I. Grabowska-Bold is partly supported by Polish Ministry of Scientific Research and Information Technology, Grant No. 2P03B 122 25. J. Szuba is partly supported by the Ministry of Scientific Research and Information Technology, Grant No. 2P03B12625. A. Kotánski is supported by the Polish State Committee for Scientific Research, Grant No. 2 P03B 09322. B. B. Levchenko is partly supported by the Russian Foundation for Basic Research, Grant No. 02-02-80123. R. Ciesielski is supported by the Polish State Committee for Scientific Research, Grant No. 2 P03B 07222. J. Sztuk is supported by KBN Grant No. 2P03B12925. T. Tymieniecka and A. Ukleja are supported by German Federal Ministry for Education and Research (BMBF), POL 01/043. J. Ukleja is supported by KBN Grant No. 2P03B12725. L. K. Gladilin is partly supported by University of Wisconsin via the U.S.-Israel BSF. This work has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the German Federal Ministry for Education and Research (BMBF), under Contract Nos. HZ1GUA 2, HZ1GUB 0, HZ1PDA 5, HZ1VFA 5, the MINERVA Gesellschaft für Forschung GmbH, the Israel Science Foundation, the U.S.-Israel Binational Science Foundation and the Benoziyo Center for High Energy Physics, the German-Israeli Foundation and the Israel Science Foundation, the Italian National Institute for Nuclear Physics (INFN), the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and its grants for Scientific Research, the Korean Ministry of Education and Korea Science and Engineering Foundation, the Netherlands Foundation for Research on Matter (FOM), the Polish State Committee for Scientific Research, Grants No. 620/E-77/SPB/DESY/P-03/DZ 117/2003-2005, No. 112/E-356/SPUB/DESY/P-03/DZ 116/2003-2005, 2 PO3B 13922, No. 115/E-343/SPUB-M/DESYP-03/DZ 121/2001-2002, 2 PO3B 07022, the German Federal Ministry for Education and Research (BMBF), the Russian Ministry of Industry, Science and Technology through its grant for Scientific Research on High Energy Physics, and the Spanish Ministry of Education and Science through funds provided by CICYT, the UK Particle Physics and Astronomy Research Counsil, the U.S. Department of Energy, and the U.S. National Science Foundation.

MEASUREMENT OF D^{*+} PRODUCTION IN DEEP INELASTIC . . .

PHYSICAL REVIEW D 69, 012004 (2004)

