UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Unsupervised learning of sensory-motor primitives

Todorov, E; Ghahramani, Z; (2003) Unsupervised learning of sensory-motor primitives. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: A New Beginning for Human Health. (pp. 1750 - 1753). IEEE Computer Society: Piscataway, US.

Full text not available from this repository.

Abstract

The search for motor primitives has captured the attention of researches in both biological and computational motor control. Yet a theory of how to construct such primitives from first principles is lacking. Here we propose to do that by building a compact forward model of the sensory-motor periphery via unsupervised learning. We also propose a method for probabilistic inversion of the forward model, which yields low-level feedback loops that can simplify control. The idea is applied to simulated biomechanical systems of varying levels of detail.

Type:Proceedings paper
Title:Unsupervised learning of sensory-motor primitives
ISBN:0780377893
DOI:10.1109/IEMBS.2003.1279744
Publisher version:http://dx.doi.org/10.1109/IEMBS.2003.1279744
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record