UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Encoding and decoding spikes for dynamic stimuli

Natarajan, R; Huys, QJM; Dayan, P; Zemel, RS; (2008) Encoding and decoding spikes for dynamic stimuli. NEURAL COMPUT , 20 (9) 2325 - 2360.

Full text not available from this repository.


Naturally occurring sensory stimuli are dynamic. In this letter, we consider how spiking neural populations might transmit information about continuous dynamic stimulus variables. The combination of simple encoders and temporal stimulus correlations leads to a code in which information is not readily available to downstream neurons. Here, we explore a complex encoder that is paired with a simple decoder that allows representation and manipulation of the dynamic information in neural systems. The encoder we present takes the form of a biologically plausible recurrent spiking neural network where the output population recodes its inputs to produce spikes that are independently decodeable. We show that this network can be learned in a supervised manner by a simple local learning rule.

Title:Encoding and decoding spikes for dynamic stimuli
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Life Sciences > Gatsby Computational Neuroscience Unit

Archive Staff Only: edit this record