UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Encapsulation of novel fluorescent nanocrystals (quantum dots) with a nanocomposite polymer and their assessment by in-vitro and in-vivo studies

Iga, A.M.; (2009) Encapsulation of novel fluorescent nanocrystals (quantum dots) with a nanocomposite polymer and their assessment by in-vitro and in-vivo studies. Doctoral thesis, UCL (University College London).

Full text not available from this repository.

Abstract

Advance in nanotechnology has led to the development of novel fluorescent probes called quantum dots which are being exploited for potential new methods of early cancer detection; spread and therapeutic management. Concerns regarding the release of potentially toxic inorganic core atoms into their surrounding environment and possessing hydrophobic surfaces are hindering the development of quantum dots. In order to abrogate their toxicity and solubilise the nanocrystals in aqueous solution a novel silica nanocomposite (NC) polymer has been used to coat them. Physical and chemical analysis of the coated quantum dots with UV-Visible spectrometry, Photoluminescence, transmission electron microscopy, X-ray microanalysis and diffraction, Atomic force microscope and FTIR Spectrophotometry has enabled us ascertain the characteristics of these unique nanocrystals. The biocompatibility of the nanocomposite coated quantum dots (NCCQD) was assessed by using Alamar blue™ metabolic assay, Pico green assay and by measuring lactate dehydrogenase release on endothelial cell damage. Potential interference of NCCQD with a rat’s normal physiology and systemic tissue distribution were assessed in an in-vivo animal model. Our results demonstrated that the nanocrystals retained their unique optical properties, had a mean hydrodynamic diameter of 10.5 nm, excellent monodispersivity and large absorption spectrum with a narrow emission band at 790nm and were highly photostable after polymer coating. NCCQD were compatible to endothelial cells as viable cells were demonstrated to be present after 14 days of growing cells in cell culture medium exposed to NCCQD at concentrations of 2.25 x 10^{-2}nM. There was no significant disturbance in the physiological parameters on injecting the NCCQD in an in-vivo rat model over a 2 hour period. NCCQD were seen to be deposited in the spleen and thymus as they are reticuloendothelial organs. In conclusion polymer encapsulated CdTe nanocrystals have tremendous potential to be exploited as a medical device in in-vivo imaging.

Type:Thesis (Doctoral)
Title:Encapsulation of novel fluorescent nanocrystals (quantum dots) with a nanocomposite polymer and their assessment by in-vitro and in-vivo studies
Language:English
Additional information:Authorisation for digitisation not received. Abstract contains LATEX text. Please see thesis for rendered formulae and equations
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Medical Sciences > Surgery and Interventional Science (Division of) > Research Department of General Surgery

Archive Staff Only: edit this record