Quiet but still bright: XMM–Newton observations of the soft gamma-ray repeater SGR 0526–66

A. Tiengo,1† P. Esposito,1,2 S. Mereghetti,1 G. L. Israel,3 L. Stella,3 R. Turolla,4,5 S. Zane,5 N. Rea,6 D. Götz7 and M. Feroci8

1 INAF/Istituto di Astrofisica Spaziale e Fisica Cosmica – Milano, via E. Bassini 15, 20133 Milano, Italy
2 INFN – Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via A. Bassi 6, 27100 Pavia, Italy
3 INAF/Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio Catone, Italy
4 Università degli Studi di Padova, Dipartimento di Fisica, via F. Marzolo 8, 35131 Padova, Italy
5 University College London, Mullard Space Science Laboratory, Holmbury St Mary, Dorking, Surrey RH5 6NT
6 University of Amsterdam, Astronomical Institute Anton Pannekoek, Kruislaan 403, 1098 SJ Amsterdam, the Netherlands
7 CEA Saclay, DSM/Irfu/Service d’Astrophysique, Orme des Merisiers, Bât. 709, 91191 Gif sur Yvette, France
8 INAF/Istituto di Astrofisica Spaziale e Fisica Cosmica – Roma, via Fosso del Cavaliere 100, 00133 Roma, Italy

Accepted 2009 July 25. Received 2009 July 24; in original form 2009 June 11

ABSTRACT
SGR 0526–66 was the first soft gamma-ray repeater from which a giant flare was detected in 1979 March, suggesting the existence of magnetars, i.e. neutron stars powered by the decay of their extremely strong magnetic field. Since then, very little information has been obtained on this object, mainly because it has been burst inactive since 1983 and the study of its persistent X-ray emission has been hampered by its large distance and its location in a X-ray bright supernova remnant in the Large Magellanic Cloud. Here, we report on a comprehensive analysis of all the available XMM–Newton observations of SGR 0526–66. In particular, thanks to a deep observation taken in 2007, we measured its pulsation period ($P = 8.0544 \pm 0.0002$ s) 6 years after its latest detection by Chandra. This allowed us to detect for the first time a significant reduction of its spin-down rate. From a comparison with two shorter XMM–Newton observations performed in 2000 and 2001, we found no significant changes in the spectrum, which is well modelled by an absorbed power law with $N_{H} = 4.6^{+0.7}_{-0.5} \times 10^{21}$ cm$^{-2}$ and $\Gamma = 3.27^{+0.07}_{-0.04}$. The high luminosity ($\sim 4 \times 10^{35}$ erg s$^{-1}$, in the 1–10 keV energy band) still observed ∼25 years after the latest detection of bursting activity places SGR 0526–66 in the group of bright and persistent magnetar candidates.

1 INTRODUCTION

On 1979 March 5, an extremely bright gamma-ray burst (GRB), followed by a >60 s long tail pulsating at a period of 8.1 ± 0.1 s, was detected by many spacecrafts (Mazets et al. 1979). The event was localized within the young (∼5000–10 000 years old) supernova remnant (SNR) LHA 120–N49 (N49) in the Large Magellanic Cloud (LMC; Cline et al. 1982). These properties indicated that the burst was emitted by a young neutron star, leading Duncan & Thompson (1992) and Paczynski (1992) to propose the existence of neutron stars with magnetic fields of $\sim 10^{15}$ G that were called magnetars. The detection of many weaker bursts from the same direction in the following 4 years indicated that the March 5 event was not a typical GRB, but an exceptional outburst from a small class of sources which had been just discovered and called soft gamma-ray repeaters (SGRs). Indeed the 1979 March 5 event from SGR 0526–66 was the first ‘giant flare’ observed from an SGR. Only two other such events have been observed in the following years, each one from a different SGR (Hurley et al. 1999, 2005).

Up to now, only six SGRs have been discovered (plus a few candidates). They are characterized by the emission of short bursts of gamma-rays during sporadic periods of activity. In addition, they are also observed as pulsating X-ray sources with periods in the 2–9 s range and persistent luminosities up to $\sim 10^{36}$ erg s$^{-1}$. The magnetar model was developed to explain both their bursting and persistent emission (Thompson & Duncan 1995) and later extended...
are compatible with the 8 s period detected in the pulsating tail of the 1979 giant flare and give a spin-down rate of \(p = (6.5 \pm 0.5) \times 10^{-11} \text{ s}^{-1} \), a value in the same range as that of the other magnetar candidates.

In order to measure again the pulsation period and search for small window (SW): 6 ms; MOS full frame (FF): 2.6 s and MOS small window (SW): 0.3 s.

\(^6\)arcmin off-axis.

All the data were processed using the XMM–Newton Science Analysis Software (SAS version 8.0.0) and the calibration files released in 2007 August. The standard pattern selection criteria for the EPIC X-ray events (patterns 0–4 for PN and 0–12 for MOS) were adopted. The RGS analysis followed the standard selection criteria as well.\(^1\) Response matrices and ancillary files for each spectrum were produced using the SAS software package, and the spectra were fitted using xspec version 11.3.1. All errors reported in the following analysis are at 1\(\sigma \).

2 OBSERVATIONS AND DATA ANALYSIS

SGR 0526–66 was observed by XMM–Newton on 2007 November 10 for about 70 ks. The field containing SGR 0526–66 had already been observed by XMM–Newton, with shorter exposure times, on 2000 July 8 and 2001 April 8. In the 2000 observation, SGR 0526–66 was \~\!6 arcmin off-axis, while in the other observations it was on-axis. We concentrate here on the analysis of the data collected with the EPIC (European Photon Imaging Camera) instrument, which is composed by a PN (Strüder et al. 2001) and two MOS X-ray cameras (Turner et al. 2001), sensitive in the 0.2–15 keV energy range. Details on the instrument settings (optical blocking filter and operating mode) for each observation are listed in Table 1.

For the longest observation, we also used the data collected by the Reflection Grating Spectrometer (RGS; den Herder et al. 2001), which worked in parallel to the EPIC instrument and had a net exposure time of 71 ks for each of its two units (RGS1 and RGS2). This high-resolution spectrometer is sensitive in the 0.35–2.5 keV energy range.

\(^1\) See http://xmm.esac.esa.int/external/xmm_user_support/documentation/sas_usg/USG/.

Table 1. Log of the XMM–Newton observations of SGR 0526–66.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Date</th>
<th>Instrument</th>
<th>Mode(^a)</th>
<th>Filter</th>
<th>Net exposure (ks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(^b)</td>
<td>2000-07-08</td>
<td>PN</td>
<td>FF</td>
<td>Medium</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOS1</td>
<td>FF</td>
<td>Medium</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOS2</td>
<td>FF</td>
<td>Medium</td>
<td>8.5</td>
</tr>
<tr>
<td>B</td>
<td>2001-04-08</td>
<td>PN</td>
<td>FF</td>
<td>Medium</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOS1</td>
<td>FF</td>
<td>Thick</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOS2</td>
<td>FF</td>
<td>Medium</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PN</td>
<td>SW</td>
<td>Medium</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOS1</td>
<td>FF</td>
<td>Medium</td>
<td>12.1</td>
</tr>
<tr>
<td>C</td>
<td>2007-11-10</td>
<td>PN</td>
<td>LW</td>
<td>Thick</td>
<td>60.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOS1</td>
<td>SW</td>
<td>Thick</td>
<td>69.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOS2</td>
<td>SW</td>
<td>Thick</td>
<td>69.7</td>
</tr>
</tbody>
</table>

\(^a\)The time resolution of the operating modes is as follows: PN full frame (FF): 73 ms; PN large window (LW): 48 ms; PN small window (SW): 6 ms; MOS full frame (FF): 2.6 s and MOS small window (SW): 0.3 s.

\(^b\)6 arcmin off-axis.

(Thompson & Duncan 1996) to the interpretation of the anomalous X-ray pulsars (AXPs). These are a group of nine X-ray sources (plus some candidates) with similar properties to those of the SGRs (see Mereghetti 2008 for a review).

The persistent X-ray emission from SGR 0526–66 was first detected with ROSAT (Rothschild, Kulkarni & Lingenfelter 1994) and then observed by Chandra in 2000 and 2001 (Kulkarni et al. 2003; Park et al. 2003), with a constant X-ray luminosity of \(\sim 10^{39} \text{ erg s}^{-1} \) (unabsorbed, in the 0.5–10 keV energy range). Being SGR 0526–66 a rather faint X-ray source, the pulsation of its persistent emission was detected only in the two Chandra observations carried out in 2000 and 2001 (Kulkarni et al. 2003). The periods measured with Chandra are compatible with the 8 s period detected in the pulsating tail of the 1979 giant flare and give a spin-down rate of \(p = (6.5 \pm 0.5) \times 10^{-11} \text{ s}^{-1} \), a value in the same range as that of the other magnetar candidates.

In order to measure again the pulsation period and search for long-term flux and spectral changes, we obtained an \(\sim 70 \) ks long observation of SGR 0526–66 with XMM–Newton, 6 years after the latest X-ray observation. In the following, we report on the results of this recent observation, together with the analysis of two short archival XMM–Newton observations performed in 2000 and 2001.

2.1 Spectral analysis

The spectral analysis of SGR 0526–66 with XMM–Newton is complicated by the location of this source within the bright SNR N49, whose spatial extent (\(\sim 40 \) arcsec radius) is only slightly larger than the instrumental point spread function (the 90 per cent encircled energy fraction for a point source is \(\sim 40 \) arcsec).

Rather than attempting to subtract the SNR contribution as a background component, we included it in the fits with a free normalization and a fixed spectral shape determined as explained below. To reduce the contamination from the soft X-ray emission of N49, we extracted the SGR EPIC spectrum in the 1–10 keV energy range from a circle of 10 arcsec radius (this includes 60 per cent of the point source counts at 5 keV). The background spectrum was extracted from a region outside the SNR, but in the same CCD as the SGR (see Fig. 1).

To model the soft and line-rich spectrum of the SNR, we took advantage of the high-resolution spectra collected by the RGS instrument during the longest observation. We extracted the first-order spectra from the standard region normally used for point sources, setting the centre of the SNR as source position (such a selection includes most of the photons detected from the SNR, thanks to its relatively small extension). The RGS spectral analysis was restricted to the 1–2 keV energy range. To model the SNR above 2 keV, we extracted a 1–10 keV PN spectrum from a 40 arcsec circle centred in the middle of the SNR and fitted it together with the spectra of the two RGS units. Based on the results of previous X-ray observations...
of N49 (Park et al. 2003; Bilikova et al. 2007), we used a model consisting of the sum of two plane-parallel shock components at different temperatures (\textsc{vpshock} in \textsc{xspec}) both corrected for photoelectric absorption (\textsc{phabs} in \textsc{xspec}). To this we added an absorbed power law to account for the emission from SGR 0526–66. Its parameters were fixed at the best-fitting values found with \textsc{Chandra}: \(N_H = 5.6 \times 10^{21} \text{cm}^{-2}\), \(kT_1 = 0.577^{+0.002}_{-0.005} \text{keV}\), \(\tau_1 = 5.4^{+0.1}_{-0.08} \times 10^{12} \text{s cm}^{-3}\), \(kT_2 = 1.10 \pm 0.01 \text{keV}\), \(\tau_2 > 3 \times 10^{13} \text{s cm}^{-3}\), \(\text{Ne}/\text{Ne}_{\odot} = 0.66 \pm 0.02\), \(\text{Mg}/\text{Mg}_{\odot} = 0.59 \pm 0.01\), \(\text{Si}/\text{Si}_{\odot} = 0.79 \pm 0.01\), \(\text{S}/\text{S}_{\odot} = 1.00 \pm 0.04\), \(\text{Ca}/\text{Ca}_{\odot} = 0.6 \pm 0.4\), \(\text{Fe}/\text{Fe}_{\odot} = 0.45 \pm 0.02\). The abundances of the other elements are fixed to the solar values (Anders & Grevesse 1989). These parameters are in good agreement with previous studies of this SNR (Park et al. 2003; Bilikova et al. 2007). The unabsorbed flux in the 1–10 keV energy range is \(7.1 \times 10^{-12} \text{erg cm}^{-2} \text{s}^{-1}\) for the SNR and \(1.6 \times 10^{-12} \text{erg cm}^{-2} \text{s}^{-1}\) for the SGR.

We then fitted the EPIC spectra extracted from the small region around SGR 0526–66 with an absorbed power law plus the model of the SNR described above. All the SNR model parameters were fixed at their best-fitting values, except for the normalization, in order to properly account for the unknown intensity of the SNR emission in the source extraction region. A good fit (\(\chi^2 = 274.1/233\) d.o.f.; see Fig. 2) is obtained with a hydrogen column density \(N_H = (4.6^{+0.2}_{-0.3}) \times 10^{21} \text{cm}^{-2}\) and a photon index \(\Gamma = 3.27^{+0.07}_{-0.04}\). The lack of systematic residuals in correspondence with the SNR brightest spectral lines (see Fig. 2) indicates that the SNR contamination is sufficiently well modelled. The 1–10 keV (unabsorbed) flux of the power-law component is \((1.25^{+0.05}_{-0.02}) \times 10^{-12} \text{erg cm}^{-2} \text{s}^{-1}\). This corresponds to a luminosity of \(4.3 \times 10^{35} \text{erg s}^{-1}\) for a distance of 55 kpc.

Since no time variability is expected in the SNR contribution, we can fit the SGR spectra of the older EPIC observations with the model described above, keeping the SNR model normalization fixed at the value obtained in the longest observation. The best-fitting parameters for an absorbed power-law model are reported in Table 2.

No spectral variability is detected and significant (\(>3\sigma\)) flux variations larger than \(\sim 50\) per cent among the different \textit{XMM–Newton} observations can be excluded.

2.2 Timing analysis

For the timing analysis, the photon arrival times were converted to the Solar system barycentre with the \textsc{barycen} \textsc{sas} task. We used the same extraction region adopted for the spectra, but we performed the analysis in the 0.65–12 keV energy band to optimize the signal-to-noise ratio. The pulse periods measured with \textsc{Chandra} using the \(Z^2\) test were \(8.0436(2)\) s on 2000 January 4 and \(8.0470(2)\) s on 2001 August 31 (Kulkarni et al. 2003). We searched for pulsations in the period range \(8.0464–8.2423\) s, selected by considering the \(3\sigma\) lower limit on the most recent spin period value reported by Kulkarni et al. (2003) and extrapolating to the epoch of the \textit{XMM–Newton} observation under the assumption of a (conservative) period derivative of \(0 \leq \dot{P} \leq 10^{-9} \text{s}^{-1}\). In Fig. 3, we show the \(Z^2\) periodogram obtained by using the combined events from the PN and MOS cameras.

\(^2\) Although this fit is not statistically acceptable, a detailed modelling of the SNR emission is beyond the scope of this Letter and so we did not adopt more complex spectral models.

\(^3\) More complex spectral models, which are usually used to fit magnetar spectra, were not adopted in this case due to the uncertainty of the background subtraction.

\(^4\) We also applied a second normalization factor to both the SNR and the SGR models to account for the cross-calibration uncertainties between the EPIC cameras; the maximum flux discrepancy we find between the EPIC cameras is lower than 15 per cent.
Table 2. Best-fitting spectral parameters for the three EPIC observations (see Table 1) of SGR 0526–66 in the 1–10 keV energy range. The spectral model consists of a fixed component modelling the SNR contamination (see the text for details) and an absorbed power-law model for the SGR emission.

<table>
<thead>
<tr>
<th>Observation</th>
<th>SNR norm.</th>
<th>N_H (1022 cm$^{-2}$)</th>
<th>Γ</th>
<th>Fluxb (10$^{-12}$ erg cm$^{-2}$ s$^{-1}$)</th>
<th>χ^2 (d.o.f.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.117 (fixed)</td>
<td>$3.8^{+0.2}_{-1.6}$</td>
<td>$3.1^{+0.4}_{-0.1}$</td>
<td>$1.3^{+0.2}_{-0.1}$</td>
<td>1.04 (65)</td>
</tr>
<tr>
<td>B</td>
<td>0.117 (fixed)</td>
<td>$5.3^{+0.6}_{-1.1}$</td>
<td>$3.3^{+0.1}_{-0.2}$</td>
<td>$1.3^{+0.1}_{-0.2}$</td>
<td>0.88 (166)</td>
</tr>
<tr>
<td>C</td>
<td>0.117$^{+0.002}_{-0.005}$</td>
<td>$4.6^{+0.7}_{-0.5}$</td>
<td>$3.27^{+0.07}_{-0.04}$</td>
<td>$1.25^{+0.05}_{-0.02}$</td>
<td>1.18 (233)</td>
</tr>
</tbody>
</table>

5 Normalization factor applied to the best-fitting model of the RGS and PN spectrum of the whole SNR.

6 Unabsorbed flux in the 1–10 keV range.

3 DISCUSSION AND CONCLUSIONS

Due to its location in the LMC, SGR 0526–66 is one of the magnetars less frequently observed. In addition to its larger distance with respect to Galactic magnetars, the analysis of its persistent X-ray emission is complicated by the bright soft X-ray emission of the N49 SNR. With a deep XMM–Newton observation performed in 2007, we could measure the pulsation period of SGR 0526–66 which was previously detected only in the pulsating tail following the 1979 March 5 giant flare (Mazets et al. 1979) and in two Chandra observations taken in 2000 and 2001 (Kulkarni et al. 2003). The pulsation profile (shown in Fig. 3) is double-peaked and the pulsed fraction is (13.6 ± 0.9) per cent. Although, to our knowledge, the pulse profile of SGR 0526–66 was never published before, these might be permanent properties of this source since a non-sinusoidal modulation and a pulsed fraction around 10 per cent were also reported for the Chandra data (Kulkarni et al. 2003).

Although the period measurements of SGR 0526–66 are very sparse, the value we derived shows, for the first time, a significant decrease in the spin-down rate of this source. In the magnetar model, a reduction of the spin-down rate can be interpreted as an indication of a more relaxed state of the twisted magnetosphere and should be associated with a low rate of bursting activity, a spectral softening and a decrease of the persistent X-ray luminosity (Thompson, Lyutikov & Kulkarni 2002). This behaviour is sometimes observed in magnetar candidates (see e.g. Mereghetti et al. 2005), but some exceptions have been found (see e.g. Gurvich & Kaspi 2004). In the case of SGR 0526–66, the bursting activity is indeed very low, since no bursts have been detected since 1983. However, we note that some bursts might have been missed due to its large distance and its location in a sky region not frequently monitored by γ-ray instruments.

The X-ray luminosity measured in 2007 is ~ 30 per cent lower (and the spectrum slightly softer) than that reported from the analysis of Chandra data taken in 2000 and 2001 (Kulkarni et al. 2003). However, due to the different characteristics of the instruments and additional uncertainties due to the presence of contamination from the SNR diffuse emission, we consider these changes well within the systematic uncertainties. Using the two shorter XMM–Newton observations, taken almost simultaneously with the Chandra ones, we can instead extract the spectrum and model the SNR emission in the same way as we did for the 2007 observation. In this case, we are dominated by statistical errors and no significant changes in the spectral shape and source flux are detected.

The luminosity of SGR 0526–66, which can be well determined thanks to its accurately known distance, is higher than that of most magnetar candidates (see e.g. Durant & van Kerkwijk 2006). Since this high luminosity has not substantially varied for at least several years, it is probably a long-lasting property of this magnetar rather...
than a transient bright state related to its past bursting activity, culminating with the giant flare of 1979 March 5. This behaviour is radically different from the one displayed, as an example, by SGR 1627–41 that, after two distinct periods of bursting activity, rapidly decreased its persistent X-ray luminosity down to \(\sim 10^{33} \) erg s\(^{-1}\) (Esposito et al. 2008). While it is unclear whether this behaviour is related to intrinsic differences between the sources (e.g. the magnetic field) or different evolutionary stages, this seems to support the emerging trend of separating the magnetars into transient and persistent objects, rather than in AXPs and SGRs. In this framework, SGR 0526–66 should therefore be considered a member of the persistent magnetars group.

ACKNOWLEDGMENTS

We acknowledge the partial support from ASI (ASI/INAF contracts I/088/06/0 and AAE TH-058). PE thanks the Osio Sotto city council for support with a G. Petrocchi fellowship. SZ acknowledges support from STFC. NR is supported by an NWO Veni Fellowship. DG acknowledges the CNES for financial support.

REFERENCES

Hurley K. et al., 1999, Nat, 397, 41
Hurley K. et al., 2005, Nat, 434, 1098
Mereghetti S., 2008, A&AR, 15, 225

This paper has been typeset from a TEX/LATEX file prepared by the author.