UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Bayesian Inference for Gaussian Mixed Graph Models

Silva, R; Ghahramani, Z; (2012) Bayesian Inference for Gaussian Mixed Graph Models. In:

Full text not available from this repository.

Abstract

We introduce priors and algorithms to perform Bayesian inference in Gaussian models defined by acyclic directed mixed graphs. Such a class of graphs, composed of directed and bi-directed edges, is a representation of conditional independencies that is closed under marginalization and arises naturally from causal models which allow for unmeasured confounding. Monte Carlo methods and a variational approximation for such models are presented. Our algorithms for Bayesian inference allow the evaluation of posterior distributions for several quantities of interest, including causal effects that are not identifiable from data alone but could otherwise be inferred where informative prior knowledge about confounding is available.

Type:Proceedings paper
Title:Bayesian Inference for Gaussian Mixed Graph Models
Additional information:Appears in Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI2006)
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science
UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Statistical Science

Archive Staff Only: edit this record