UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Multi-task feature learning

Argyriou, A; Pontil, M; Evgeniou, T; (2007) Multi-task feature learning. In: Advances in Neural Information Processing Systems. (pp. 41 - 48).

Full text not available from this repository.

Abstract

We present a method for learning a low-dimensional representation which is shared across a set of multiple related tasks. The method builds upon the wellknown 1-norm regularization problem using a new regularizer which controls the number of learned features common for all the tasks. We show that this problem is equivalent to a convex optimization problem and develop an iterative algorithm for solving it. The algorithm has a simple interpretation: it alternately performs a supervised and an unsupervised step, where in the latter step we learn commonacross- tasks representations and in the former step we learn task-specific functions using these representations. We report experiments on a simulated and a real data set which demonstrate that the proposed method dramatically improves the performance relative to learning each task independently. Our algorithm can also be used, as a special case, to simply select - not learn - a few common features across the tasks.

Type:Proceedings paper
Title:Multi-task feature learning
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record