Endogenous Technology Adoption Under Production Risk: Theory and Application to Irrigation Technology

Phoebe Koundouri
Department of Economics, University of Reading, Reading, RG6 6AA, UK.
Department of Economics/CSERGE, University College London, London WC1E 6BT, UK.

Céline Nauges
LEERNA-INRA, Université des Sciences Sociales, 21 Allée de Brienne, 31000 Toulouse, France.

Vangelis Tzouvelekas
Department of Economics, University of Crete, 74100, Rethymno, Crete, Greece.

Abstract. The use of modern irrigation technologies has been proposed as one of several possible solutions to the problem of water resource scarcity and environmental degradation in many agricultural areas around the world. The main objective of this paper is to present a theoretical framework that conceptualizes adoption as a decision process involving information acquisition by farmers who face yield uncertainty and vary in their risk preferences. This is done by integrating the microeconomic foundations used to analyze production uncertainty at the farm level with the traditional technological adoption models. First we follow the approach of Antle (1987) based on higher-order moments of profit, which enables flexible estimation of the stochastic technology without ad hoc specification of risk preferences. Then individual risk preferences are derived, which are then used to explain farmer’s decision to adopt modern water saving technologies. The proposed model is applied to a randomly selected sample of 265 farms located in Crete, Greece. Results show that risk preferences affect the probability of adoption and provide evidence that farmers invest in new technologies as a means to hedge against input related production risk.

Keywords: stochastic agricultural production, risk attitudes, technology adoption, moments-based estimation.

1 Introduction

Irrigation water is becoming an increasingly scarce resource for the agricultural sector in many regions and countries. Common ground in past policy schemes was the development of adequate irrigation infrastructure to guarantee the supply of irrigation water as the demand for agricultural products has been increased. However, these expansionary policies have resulted in a massive consumption of irrigation water by the agricultural sector at a significant cost and physical scarcity.

Water scarcity has become an increasing social and economic concern for the policy makers and competitive water users. Particularly, agriculture is becoming the sector to which policy makers are pointing out at the core of the water problem. The use of
modern irrigation technologies has been proposed as one of several possible solutions to the problem of water resource scarcity and environmental degradation in many agricultural areas around the world.

The empirical research of this issue followed, however, different tracks. Based on technical grounds several studies have attempted to analyze on-farm adoption of irrigation technologies using the engineering notion of irrigation water efficiency defined by Whinlesey, McNeal and Obersinner (1986) (i.e., ratio of water stored in the crop root zone to the total water diverted for irrigation). Moreover, by technically and economically evaluating irrigation technologies, some combinations of water savings and yield increase was found to be necessary in order to induce farmers to adopt water conserving technologies (e.g., Coupal and Wilson, 1990; Santos, 1996; Droogers, Kite and Murray-Rust, 2000, Arabiyat, Segarra and Johnson, 2001). Despite of the fact that these studies have been quite appealing in analyzing the changes and the diffusion of irrigation technologies in agriculture they lack economic intuition.

On the other hand, in the context of technological adoption models initiated by Griliches (1957) pioneering work on adoption of hybrid corn in the US, the analysis of farmer’s decision to adopt technological innovations took a different direction. The majority of this group of empirical research has been concerned with the socio-economic, demographic and structural factors that determine farmer’s choice to adopt or not irrigation technologies and with patterns of diffusion of the innovation through the population of potential adopters over time (e.g., Fishelson and Rymon, 1989; Dinar and Zilberman, 1991; Dinar, Campbell and Zilberman, 1992; Dinar and Yaron, 1992).

Despite of the numerous studies in this area, the results of applied research are often contradictory concerning the importance and influence of any given variable used to analyze farmer’s decision. Among the various socio-economic, structural or demographic variables used in these studies, risk has often been considered as a major factor reducing the rate of adoption of any kind of innovation (Jensen, 1982). Nevertheless, the issue of risk has been rarely addressed adequately in the relevant literature. Uncertainty associated with the adoption of any kind of agricultural technology has two features: first, the perceived riskiness of future farm yield after adoption and second, production or price uncertainty related to the farming itself.

Several authors have empirically investigated technology adoption and diffusion taking into account farmer’s perceptions about the degree of risk concerning future yield (e.g., Tsur, Sternberg and Hochman, 1990; Feder and Umali, 1993; Saha, Love and Schwart, 1994; Batz, Peters and Janssen, 1999). However, a relative dearth of research seems to exist on the perceivable link between farmer’s decision to adopt innovations and production or price uncertainty related to farm activities. A notable exception is the work by Yaron, Dinar and Voet (1992) who attempted to analyze the effect of price uncertainty on the innovativeness of family farms in the Nazareth region of Israel by including in their technology adoption model a proxy of farmer’s risk tolerance towards output price variability.

A related and relatively new aspect of stochastic production models is the estimation of the effect of input choice on risk. Risk considerations are necessary in the analysis of
the agricultural sector as there exist a number of possible cases where intelligent policy formulation should consider not only the marginal contribution of input use to the mean of output, but also the marginal reduction in the variance of output. The traditional approach (theoretical and empirical) to evaluating the impact of the choice of inputs on production risk makes implicit, if not explicit assumptions to the effect that inputs increase risk. Examples of such theoretical studies are Stiglitz (1974), Batra (1974) and Bardhan (1977). These studies utilized multiplicative stochastic specifications, which are restrictive in the sense that inputs that marginally reduce risk are not allowed. Just and Pope (1978) who identified this restrictiveness, proposed a more general stochastic specification of the production function which includes two general functions: one which specifies the effects of inputs on the mean of output and another on its variance, thus allowing inputs to be either risk-increasing or risk-decreasing.

While Just and Pope’s model is a generalization of the traditional model, as it does not restrict the effects of inputs on the variance to be related to the mean, Antle (1983, 1987) has shown that it does restrict the effects of inputs across the second and higher moments in exactly the way traditional econometric models do across all moments. Thus Antle’s departure point was to establish a set of general conditions under which standard econometric techniques can be used to identify and estimate risk attitude parameters as part of a structural econometric model, under less restrictive conditions. More specifically, Antle’s moment-based approach begins with a general parameterization of the moments of the probability distribution of output, which allows more flexible representations of output distributions and allows the identification of risk parameters. Moreover, Antle’s approach places the emphasis on the distribution of risk attitudes in the population, which constitutes a departure from existing literature which focuses on measurement of the risk attitudes of the individual producer (see for example Hazell, 1982; Pope, 1982; and Binswanger, 1982).

Love and Buccola (1991, 1999) also proposed an extension of Just and Pope’s model including producers attitude toward risk in the model. They considered producers’ risk preferences in a joint analysis of input allocation and output supply decisions. An implicit form of the utility function was assumed. In a recent article by Kumbhakar (2002), risk preference functions are derived without directly assuming an explicit form of the utility function. Two sources of risk, viz., production uncertainty and technical efficiency, are considered.

The main objective of this paper is to present a theoretical framework that conceptualizes adoption as a decision process involving information acquisition by farmers who vary in their risk preferences. This can be done by integrating the microeconomic foundations used to analyze production uncertainty at the farm level with the traditional technological adoption models. Specifically, Antle’s (1987) approach which enables flexible estimation of the stochastic technology is used to evaluate individual risk preferences which then can be used to evaluate farmer’s decision to adopt modern water saving technologies. The proposed model is applied to a randomly selected sample of 265 farms located in Crete, Greece.

The rest of the paper is organized as follows. Section 2 presents the theoretical frame-
work used to analyze farmer’s decision in the presence of production uncertainty. The data used in this study and the empirical model are discussed in Section 3 while the empirical results are analyzed in Section 4. Section 5 summarizes and concludes the paper.

2 Theoretical model

Let’s consider a risk-averse farmer who produces a single output \(q \). Let \(p \) denote output price, \(f(\cdot) \) is the production function assumed continuous and twice differentiable, \(X \) is the vector of inputs and \(r \) the vector of associated input prices. We assume that the farmer incurs a risk as crop yield might be affected by climatic conditions. This risk is represented by a random variable \(\varepsilon \) whose distribution \(G(\cdot) \) is thus not affected by farmer actions. This is the only source of risk we consider as we assume prices \(p \) and \(r \) to be non-random.

Water (input \(X_w \)) is assumed to be an essential input in the production process. Efficiency in water use, assumed to vary between farms, is taken into account by incorporating in the production function a parameter \(h(\alpha) \) where \(\alpha \) represents farmer’s characteristics.

The production function will thus be written \(q = f(h(\alpha)X_w, X_{-w}) \) where \(X_{-w} \) is the vector of all inputs except water. Farms are assumed to be price-takers both in the input and output markets.

Allowing for risk aversion, the farmer problem is to maximize expected utility of profit:

\[
\max_X E\left[U(\Pi)\right] = \max_X \int [U(p f(\varepsilon, h(\alpha)X_w, X_{-w}) - r'X)] dG(\varepsilon),
\]

(1)

where \(U(\cdot) \) is the Von Neuman-Morgenstern utility function. The first-order condition for irrigation water input \(X_w \) is:

\[
E[r_w \times U'] = E\left[p \frac{\partial f(\varepsilon, h(\alpha)X_w, X_{-w})}{\partial X_w} \times U'\right],
\]

\[
\Leftrightarrow \frac{r_w}{p} = E\left(\frac{\partial f(\varepsilon, h(\alpha)X_w, X_{-w})}{\partial X_w}\right) + \frac{\text{cov}(U', \frac{\partial f(\varepsilon, h(\alpha)X_w, X_{-w})}{\partial X_w})}{E(U')},
\]

(2)

because \(p \) and \(r_w \) are not random, and where \(U' = \partial U(\Pi)/\partial \Pi \). For a risk-neutral producer, the ratio of input price over output price, \((r_w/p) \), equals the expected marginal productivity of \(X_w \), \(E[\partial f(\varepsilon, h(\alpha)X_w, X_{-w})/\partial X_w] \). When the producer is risk-averse, the second term in the right-hand side of (2) is different from 0, and measures deviations from the risk-neutrality case. More precisely, this term is proportional and has the opposite sign, to the marginal risk premium with respect to \(X_w \).

Proof: The Arrow-Pratt risk-premium \(R(X) \) is defined as the amount of money that should be given to the risk-averse farmer for him to behave as a risk-neutral agent. A risk-neutral agent would maximize its expected profit:

4
\[
\max_X [p \times Ef (\varepsilon, h(\alpha)X_{w}, X_{-w}) - r'X - R(X)].
\]

First order condition associated with water input defines the marginal risk premium with respect to water:
\[
\frac{\partial R}{\partial X_w} = p \times E \left(\frac{\partial f (\varepsilon, h(\alpha)X_{w}, X_{-w})}{\partial X_w} \right) - r_w.
\]

And rearranging terms of (2):
\[
p \times E \left(\frac{\partial f (\varepsilon, h(\alpha)X_{w}, X_{-w})}{\partial X_w} \right) - r_w = -p \times \text{cov}(U', \partial f (\varepsilon, h(\alpha)X_{w}, X_{-w}) / \partial X_w) / E(U').
\]

Optimal water use \(X^*_w\) is the solution of equation (2). To derive an analytical solution to this equation, we would need to specify the farmer’s preferences (its utility function \(U(.)\)), the production process \((f(.))\) and the distribution of the random variable representing risk \((G(.)\)). To remain as general as possible, we simply write optimal water use as an unspecified function of input and output prices, technology, preferences and marginal risk-premium.

Assume now that a farm can choose to adopt \((i = 1)\) or not \((i = 0)\) an innovative irrigation technology that would increase water use efficiency \((h_1(\alpha) > h_0(\alpha))\) for \(0 < \alpha < 1\). In other words, less water will be necessary to produce the same level of output if the farmer uses the new technology. Adopting the new technology implies a fixed cost \((I_1 > 0 \text{ and } I_0 = 0)\) and might change the marginal cost of water \((r'_w \neq r'_0)\). Denote \(X^1\) [respectively \(X^0\)] the optimal input choices if the new technology is [respectively is not] adopted. First order condition for water input corresponding to the case of adoption is thus

\[
\frac{r'_w}{p} = E \left(\frac{\partial f (\varepsilon, h_1(\alpha)X^1_{w}, X^1_{-w})}{\partial X_w} \right) + \frac{\text{cov}(U', \partial f (\varepsilon, h_1(\alpha)X^1_{w}, X^1_{-w}) / \partial X_w)}{E(U')},
\]

and for the case of non-adoption:

\[
\frac{r'_0}{p} = E \left(\frac{\partial f (\varepsilon, h_0(\alpha)X^0_{w}, X^1_{-w})}{\partial X_w} \right) + \frac{\text{cov}(U', \partial f (\varepsilon, h_0(\alpha)X^0_{w}, X^1_{-w}) / \partial X_w)}{E(U')}.\]

The farmer will adopt the new irrigation technology if the expected utility with adoption is greater than the expected utility before adoption. Expected utility under adoption is:

\[
E \left[U(\Pi^1) \right] = \int \left[U(p f (\varepsilon, h_1(\alpha)X^1_{w}, X^1_{-w}) - r'_wX^1_{w} - r'_{-w}X^1_{-w} - I_1) \right] dG(\varepsilon),
\]
and with no adoption:

\[E \left[U(\Pi^0) \right] = \int \left[U(pf(\varepsilon, h_0(\alpha)X^0_w, X^0_{-w}) - r^0_wX^0_w - r^{'-w}X^0_{-w}) \right] dG(\varepsilon). \] (6)

The farmer will choose to adopt the innovate irrigation technology if:

\[E \left[U(\Pi^1) \right] - E \left[U(\Pi^0) \right] > 0. \] (7)

Farmer’s choice thus depends on input and output prices, the fixed cost of the new technology, technology parameters, preferences, risk-premium, the distribution of risk and the farmer’s characteristics. The empirical application of this model adopts Antle’s (1983, 1987) approach that allows estimation of the farmer’s attitudes towards risk without specification of any of the above parameters that affect farmer’s choice.

3 Empirical Application

3.1 Data Description

The dataset used in this study is extracted from broader dataset, collected via a survey on the structural characteristics of the agricultural sector in Crete, financed by the Regional Directorate of Crete in the context of the Regional Development Program 1995-99 (Liodakis, 2000). The sample consists of 265 randomly selected farms located in the four major districts of Crete, namely Chania, Rethymno, Heraklio and Lasithi, during the 1995-96 period. The survey provides detailed information about production patterns, input use, average yields, gross revenues, structural characteristics and the number of farms adopted modern irrigation technologies during the period of 5 years prior to survey. Descriptive statistics are provided in Table 1.
Table 1. Descriptive Statistics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adopters</th>
<th>Non-Adopters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic Data:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop Output (in Kgs)</td>
<td>18,234</td>
<td>21,439</td>
</tr>
<tr>
<td>Livestock Output (in Kgs)</td>
<td>1,542</td>
<td>2,504</td>
</tr>
<tr>
<td>Land (stremmas(^1))</td>
<td>45</td>
<td>56</td>
</tr>
<tr>
<td>Labour (in hours)</td>
<td>452</td>
<td>530</td>
</tr>
<tr>
<td>Chemical Inputs (in Kgs)</td>
<td>12,405</td>
<td>16,212</td>
</tr>
<tr>
<td>Capital Stock(^2) (in Euros)</td>
<td>2,634</td>
<td>3,247</td>
</tr>
<tr>
<td>Irrigation Water (in m3)</td>
<td>140</td>
<td>176</td>
</tr>
<tr>
<td>Total Cost (in Euros)</td>
<td>36,189</td>
<td>45,198</td>
</tr>
<tr>
<td>Total Revenue (in Euros)</td>
<td>53,276</td>
<td>65,871</td>
</tr>
<tr>
<td>Profits (in Euros)</td>
<td>17,087</td>
<td>20,673</td>
</tr>
<tr>
<td>Farm Characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmer’s Age (years)</td>
<td>36</td>
<td>56</td>
</tr>
<tr>
<td>Farmer’s Education (years)</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Farm’s Debts (in Euros)</td>
<td>2,921</td>
<td>893</td>
</tr>
<tr>
<td>Subsidies (in Euros)</td>
<td>1,194</td>
<td>444</td>
</tr>
<tr>
<td>Extension Visits (No visits)</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Access to Information (1=yes, 0=no)</td>
<td>0.471</td>
<td>0</td>
</tr>
<tr>
<td>Index of Relative Risk Premium</td>
<td>0.460</td>
<td>0.522</td>
</tr>
<tr>
<td>Aridity Index(^3)</td>
<td>1.188</td>
<td>0.603</td>
</tr>
<tr>
<td>Soil type: (% of farms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clayey Sandy</td>
<td>10.3</td>
<td>41.0</td>
</tr>
<tr>
<td>Clayey Limestones</td>
<td>40.2</td>
<td>19.7</td>
</tr>
<tr>
<td>Marly Limestones</td>
<td>41.4</td>
<td>15.7</td>
</tr>
<tr>
<td>Dolomitic Limestones</td>
<td>8.0</td>
<td>23.6</td>
</tr>
<tr>
<td>No of Farms</td>
<td>87</td>
<td>178</td>
</tr>
</tbody>
</table>

Notes:
\(^1\) One stremma equals 0.1 ha.
\(^2\) Capital stock was estimated using the perpetual inventory method.
\(^3\) Aridity index is defined as the ratio of the average annual temperature in the area over total annual precipitation.

During the year of the survey, 87 out of 265 farms (32.8%) have adopted modern irrigation technologies. These technologies vary from simple sprinklers applied mainly in tree
crops to greenhouse integrated systems that control the irrigation of the plantation. These farms are of smaller size (45 stremmas or 4.5 ha on the average) with lower capital stock (2,634 euros). However, farms adopting new irrigation technologies besides their lower profits compared with their non-adopters counterparts (17,087 and 20,673 euros, respectively) exhibit higher average profitability per stremma 380.1 and 370.2 euros/stremma, respectively. Finally, the average irrigation water use per stremma is 2.8 and 3.3 m³ for adopters and non-adopters, respectively.

In Table 1 we also present information on socio-economic and structural characteristics of the surveyed farms. From the data presented, it is evident that older farmers, who are in general less educated than their younger counterparts, are not adopting new technologies as eagerly. The average age and education level of farmers adopted modern irrigation technologies is 36 and 11 years, respectively, whereas for farmers using traditional technologies the corresponding values are 56 and 6 years. Furthermore, farms with higher debts and subsidies received are more likely to have adopted new irrigation technologies. It is also interesting to note that average debts are on the average 2,921 euros for farms that have adopted new irrigation technologies, while for farms that are using traditional irrigation practices the corresponding figure is only 893 euros. Similarly the level of subsidies is also almost three times higher for innovative farms (1,194 and 444 euros, respectively). Although subsidies refer mainly to direct income transfers implied by the respective common market organization of the CAP and thus are not related with farmers’ adoption process, it seems that it provides them with the financial viability necessary for investing in new technologies.

Also an interesting point that arises from the data presented in Table 1, refers to the exposition of the farmers to extension services (private or public) and their access to general farming information. Specifically, farmers adopting new irrigation technologies are visited by extension agents 9 times on average during the cropping year, whereas farmers insisting in traditional irrigation technologies only by 2 times on average. Further, farmers that adopt new technologies have better access to farming information from various sources (e.g. newspapers, television and radio, visits to agricultural product fairs and shows, sporadic attendance of seminars, meetings or demonstrations and so on). Finally, farms enjoying less favorable environmental conditions seem to be among the adopters of new irrigation technologies; that is farms facing higher average annual temperature and/or lower annual precipitation have on average adopted new irrigation technologies more intensively.

3.2 The Empirical Model

The derivation of an analytical solution to (7) would require the specification of technology and preferences, as well as assumptions on the error distribution. To avoid too many ad hoc specifications, we adopt a two-stage procedure: in the first step we estimate the risk-premium associated with the use of water following the line of Antle (1983, 1987). The farmer’s program can be equivalently written as the maximization of a function of moments of the profit distribution (or equivalently, the distribution of ε). Such a function
of the moments (which depend on input choices \(X \) only), denoted \(F(\cdot) \), is left completely unspecified. From this program, we derive the risk-attitude parameters and in particular the risk-premium of each farmer associated with the use of water. This risk-premium, which is indirectly derived from the technology and preferences of the farm, is then incorporated in the choice model in the second step.

Following Antle (1983, 1987), the farmer’s program can be written:

\[
\max_X E[U(\Pi)] = F[\mu_1(X), \mu_2(X), \ldots, \mu_m(X)],
\]

where \(\mu_j, j = 1, 2, \ldots, m \) is the \(j \)th moment of profit. The first order condition of the program is approximated by the following Taylor expansion, in matrix form:

\[
\frac{\partial \mu_1(X)}{\partial X} = -\left(\frac{1}{2!}\right) \frac{\partial \mu_2(X)}{\partial X} \times \frac{\partial F(X)/\partial \mu_2(X)}{\partial F(X)/\partial \mu_1(X)} - \left(\frac{1}{3!}\right) \frac{\partial \mu_3(X)}{\partial X} \times \frac{\partial F(X)/\partial \mu_3(X)}{\partial F(X)/\partial \mu_1(X)}
\]

\[
\ldots - \left(\frac{1}{m!}\right) \frac{\partial \mu_m(X)}{\partial X} \times \frac{\partial F(X)/\partial \mu_m(X)}{\partial F(X)/\partial \mu_1(X)}.
\]

We index by \(k = 1, \ldots K \) the inputs used in the production process and we assume that the farmer is concerned only by the first three moments of the distribution of profit. The marginal contribution of input \(k \) to the expected profit is given by \(\frac{\partial \mu_1(X)}{\partial X_k} \), which is written as a linear combination of the marginal contributions of input \(k \) to the variance \(\left(\frac{\partial \mu_2(X)}{\partial X_k}\right) \) and to the skewness \(\left(\frac{\partial \mu_3(X)}{\partial X_k}\right) \). Hence the following model will be estimated for each input \(k \):

\[
\frac{\partial \mu_1(X)}{\partial X_k} = \theta_{1k} + \theta_{2k} \frac{\partial \mu_2(X)}{\partial X_k} + \theta_{3k} \frac{\partial \mu_3(X)}{\partial X_k} + u_k
\]

where

\[
\theta_{jk} = -\left(\frac{\partial F(X)/\partial \mu_j(X)}{\partial F(X)/\partial \mu_1(X)}\right) \times \left(\frac{1}{j!}\right), \quad j = 1, \ldots, 3,
\]

and \(u_k \) is the usual econometric error term. \(\theta_{2k} \) and \(\theta_{3k} \) are directly related to the theory of decision under risk as \((2\theta_{2k})\) and \((-6\theta_{3k})\) are good approximations of Arrow-Pratt and down-side coefficients of risk-aversion respectively. The risk-premium is then derived as follows:

\[
RP_k = \mu_2 \frac{AP_k}{2} - \mu_3 \frac{DS_k}{6} \quad \text{for each } k
\]

where \(\mu_2 \) and \(\mu_3 \) are respectively a measure of the second- and third-order moments of the distribution. These derived farm-specific relative risk premia are used in the second stage of our empirical model. In particular, they are used to construct the explanatory variable that proxies risk attitudes. This variable is then included in the discrete choice model that explains the probability of technology adoption as a function of risk attitudes, farmer-specific socio-economic characteristics and farm-specific qualitative and financial characteristics.
3.3 Empirical Results

The table below presents risk-aversion estimation results and the calculated risk premium for the sample under consideration:

<table>
<thead>
<tr>
<th>Risk Parameter</th>
<th>Estimate</th>
<th>Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.0267</td>
<td>0.0585</td>
</tr>
<tr>
<td>θ_2 (associated with AP)</td>
<td>0.9327</td>
<td>0.4446</td>
</tr>
<tr>
<td>θ_3 (associated with DS)</td>
<td>-0.9692</td>
<td>0.2049</td>
</tr>
</tbody>
</table>

Results confront to expectation and show that farmers are risk-averse. Firstly, the constant term is not significant, which indicates that irrigation water, the input under consideration is efficiently used, in the sense that expected marginal return is equal to the factor price.\(^1\) The efficiency of the farmers allows application of Antle’s method which assumes profit maximizing behaviour. Secondly, the θ_2 parameter associated with the second moment (variance) of profit is positive and significant, which indicates that farmers exhibit Arrow-Pratt risk aversion, i.e. they are willing to sacrifice a proportion of their expected profit in order to avoid the risk associated with water input in their production. Thirdly, the parameter linked to the third moment (skewness) of profit is negative and significant, which indicates that farmers also exhibit down-side risk aversion; i.e. they are risk averse to a profit distribution that is skewed towards negative values.

The flexible estimation of the stochastic production function allows us to calculate the relative risk that each farmer in the sample is willing to pay in order to avoid the risk associated with water used as an input in his/her production. This variable (the relative risk premium) is then used in the estimation of the choice model in order to investigate whether risk attitudes affect the decision to adopt a new irrigation technology. Table 3 reports the effects of all variables on the decision to adopt.\(^2\) With the exception of the dummy variables indicating limestones soils (both clayey and marly) and location of farms in the region of Chania, all other variables included in the estimated probit model are significant at either 99% or 95% significance levels. In general, their signs conform to expectation and validate the theoretical model of section 2.

\(^1\)This also indicates that the empirical model is correctly specified.

\(^2\)In the probit model, the derivative of the probability with respect to the independent variables varies with the level of these variables. As a result, it is not generally useful to report the coefficients from a probit, unless only the sign and significance of the coefficients are of interest.
Table 3: Parameter estimates of the probit model.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-4.6812</td>
<td>(1.9033)*</td>
</tr>
<tr>
<td>Farmer’s Age</td>
<td>-0.0854</td>
<td>(0.0304)*</td>
</tr>
<tr>
<td>Farmer’s Education</td>
<td>0.2045</td>
<td>(0.0847)*</td>
</tr>
<tr>
<td>Aridity Index</td>
<td>1.9626</td>
<td>(0.7472)*</td>
</tr>
<tr>
<td>Farm’s Debts</td>
<td>0.0009</td>
<td>(0.0002)*</td>
</tr>
<tr>
<td>Extension Visits</td>
<td>0.0422</td>
<td>(0.0157)*</td>
</tr>
<tr>
<td>Access to Information</td>
<td>0.3110</td>
<td>(0.1043)*</td>
</tr>
<tr>
<td>Relative Risk Premium</td>
<td>0.1049</td>
<td>(0.0370)*</td>
</tr>
<tr>
<td>Subsidies</td>
<td>0.0038</td>
<td>(0.0008)*</td>
</tr>
<tr>
<td>Clayey Sandy</td>
<td>0.5558</td>
<td>(0.2787)**</td>
</tr>
<tr>
<td>Clayey Limestones</td>
<td>-0.1744</td>
<td>(0.3749)</td>
</tr>
<tr>
<td>Marly Limestones</td>
<td>-0.5553</td>
<td>(0.4550)</td>
</tr>
<tr>
<td>Chania</td>
<td>-1.1059</td>
<td>(0.4912)*</td>
</tr>
<tr>
<td>Rethymno</td>
<td>0.5242</td>
<td>(0.5119)</td>
</tr>
<tr>
<td>Lasithi</td>
<td>0.8681</td>
<td>(0.4340)**</td>
</tr>
<tr>
<td>% of Correct Prediction</td>
<td>97.84</td>
<td></td>
</tr>
<tr>
<td>McFadden’s R²</td>
<td>94.40</td>
<td></td>
</tr>
</tbody>
</table>

* (***) significant at the 1 (5)% level.

One useful expedient is to calculate the value of the derivatives at the mean values of all the independent variables in the sample. The motivation is to display the derivative for a “typical” element of the sample. These derivatives are reported in table 4 and represent the marginal effect of each regressor, which approximates the change in the probability of adoption at the regressors’ mean. Standard errors were obtained using block resampling techniques, which entails grouping the data randomly in a number of blocks of five farms and reestimating the model leaving out each time one of the blocks of observations and then computing the corresponding standard errors (Politis and Romano, 1994).
Table 4: Marginal effects on the probability of adoption.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmer’s Age</td>
<td>-0.02978</td>
<td>(0.0092)*</td>
</tr>
<tr>
<td>Farmer’s Education</td>
<td>0.07128</td>
<td>(0.0234)*</td>
</tr>
<tr>
<td>Aridity Index</td>
<td>0.68394</td>
<td>(0.1546)*</td>
</tr>
<tr>
<td>Farm’s Debts</td>
<td>0.00031</td>
<td>(0.0002)**</td>
</tr>
<tr>
<td>Subsidies</td>
<td>0.00132</td>
<td>(0.0003)*</td>
</tr>
<tr>
<td>Extension Visits</td>
<td>0.01471</td>
<td>(0.0033)*</td>
</tr>
<tr>
<td>Access to Information</td>
<td>0.10838</td>
<td>(0.0542)**</td>
</tr>
<tr>
<td>Relative Risk Premium</td>
<td>0.03656</td>
<td>(0.0102)*</td>
</tr>
<tr>
<td>Subsidies</td>
<td>0.00132</td>
<td>(0.0003)*</td>
</tr>
<tr>
<td>Clayey Sandy</td>
<td>0.19371</td>
<td>(0.0653)*</td>
</tr>
<tr>
<td>Clayey Limestones</td>
<td>-0.06077</td>
<td>(0.0843)</td>
</tr>
<tr>
<td>Marly Limestones</td>
<td>-0.19353</td>
<td>(0.1654)</td>
</tr>
<tr>
<td>Chania</td>
<td>-0.38541</td>
<td>(0.1342)**</td>
</tr>
<tr>
<td>Rethymno</td>
<td>0.18270</td>
<td>(0.2621)</td>
</tr>
<tr>
<td>Lasithi</td>
<td>0.30253</td>
<td>(0.1325)*</td>
</tr>
</tbody>
</table>

* (***) significant at the 1 (5)% level.

The variable of particular interest to this paper is the farmer-specific relative risk premium. This variable proxies the risk attitudes of each farmer in the sample and turns out to have a positive and significant effect on the decision to adopt new irrigation technologies. That is, farmers that are more risk-averse with respect to their use of water are more likely to adopt new technologies that allow them to save water and decrease their production (yield) risk arising from water crop requirements. This result provides evidence that farmers invest in new technologies as a means to hedge against input related production risk.

As indicated in table 4, the older the farmer the less inclined he is to adopt new irrigation technologies, while the more educated his/she is the higher the probability that he/she adopts relevant technologies in their production. Moreover, as expected the more arid the location of the farm the higher the probability of adopting new water-saving irrigation technologies that help the farm face non-favorable environmental conditions.

In addition, financial variable seem to affect the probability to adopt. Farmers with higher debts as well as higher subsidies are more likely to adopt. As already indicated in the section 3.1, these subsidies refer mainly to direct income transfers implied by the respective common market organization of the CAP and thus are not related with farmers’ adoption process. However, it seems that they provide the farmers with the financial viability necessary for investing in new technologies.

The exposition of the farmers to extension services (private or public) and their access to general farming information also increase the probability to adopt the new technology. That is farmers that adopt new technologies have better access to farming information from various sources (e.g. newspapers television and radio, visits to agricultural product fairs and shows, sporadic attendance of seminars, meetings or demonstrations and so on).
As far as soil dummies are concerned clayey sandy soils have a positive and significant effect on the decision to adopt. This can be explain by the fact that sandy soils require more water as they have high absorbing capacity than other types of soil, hence giving rise to incentives for water conservation through adoption of new technologies. The regional dummies for Chania and Lasithi are significant in explaining adoption technology. The difference in their signs indicates differences in cultivated crops between these two areas. In Lasithi green houses, which water intensive, are numerous and as a result respective farmers are more inclined to adopt a water-saving new technology. On the other hand, in Chania farmers mostly cultivate olive-trees with significantly lower water requirements and as a reduced incentives for investing in expensive water-saving irrigation technologies.

4 Conclusions

The main objective of this paper was to present a theoretical framework that conceptualizes adoption as a decision process involving information acquisition by farmers who face yield uncertainty and vary in their risk preferences. To do this we have constructed the relevant theoretical model by integrating the microeconomic foundations of decision making under production uncertainty at the farm level with the traditional technological adoption models.

The application of this theoretical model involves a two-step procedure. In the first step we apply Antle (1987) flexible method of moments, which enables estimation of the stochastic technology without ad hoc specification of risk preferences and derivation of input and farmer specific risk attitudes. In th second stage, these risk attitudes are incorporated in a discrete-choice model which explains farmer’s decision to adopt irrigation technologies as a function of farmers’ socio-economic characteristics, farm-specific financial and qualitative characteristics, as well as farmers’ risk attitudes.

The proposed model is applied to a randomly selected sample of 265 farms located in Crete, Greece. Results show that risk preferences affect the probability of adoption and provide evidence that farmers invest in new technologies as a means to hedge against input related production risk. As a conclusion, this study shows that neglecting risk when assessing the choice of technology adoption could provide misleading guidance to policy makers. More precisely, we assess here that the second and third moments of the profit distribution influence farmer’s decision to adopt a new technology and should be taken into account when policies that attempt to affect technology adoption are considered.

References

