Intestinal tuberculosis

Helen D. Donoghue* and John Holton

Centre for Infectious Diseases and International Health, Department of Infection, University College London, London, UK

Correspondence to Helen D. Donoghue PhD, CIDIH, Department of Infection, University College London, 46, Cleveland Street, London W1T 4JF, UK. Tel: +44 (0) 207 6799153 Fax: +44 (0) 207 6799099 e-mail: h.donoghue@ucl.ac.uk
Purpose of review

Intestinal tuberculosis (TB) is increasing due partly to the HIV pandemic. Its clinical presentation mimics inflammatory conditions such as Crohn’s Disease and malignancies, which are becoming more prevalent, so its diagnosis is problematic.

Recent findings

Greater awareness of intestinal TB is needed, both in countries where TB is endemic and developed countries with immigrant populations. Some strains of *Mycobacterium tuberculosis* are associated with more extrapulmonary disease and greater dissemination, thereby exacerbating the rise in HIV-associated extrathoracic TB. Recent retrospective and prospective studies are leading to the development of diagnostic algorithms. A wide range of imaging techniques is available for sampling and diagnosis. New biochemical, immunological and molecular diagnostic methods are being developed but must be standardized and validated. Developments in drug delivery will facilitate oral therapy even in patients suffering from malabsorption.

Summary

There is increasing consensus on the risk factors and clinical presentations of intestinal TB. Imaging techniques, coupled with fine needle biopsies, are useful aids to diagnosis, but most important is a greater awareness of the condition by clinicians.

Keywords

abdomen, clinical presentation, diagnosis, *Mycobacterium tuberculosis*, treatment
Introduction

More than two billion people are infected with tuberculosis (TB), and in 2006, 1.7 million people died from TB, including 231,000 people coinfected with HIV [1]. Extrapulmonary tuberculosis (EPTB) is increasing and accounts for one in five registered TB patients [2]. The commonest forms are lymph node, pleural, disseminated, pericardial and meningeal TB. Abdominal (ATB) or intestinal tuberculosis (ITB) is the sixth most prevalent presentation of EPTB. The symptoms of ITB mimic those of many other conditions, especially inflammatory bowel diseases, such as Crohn’s Disease. These are increasing in incidence in TB-endemic countries such as India and southeast Asia [3**,4]. Most patients are managed without laboratory confirmation, so simplified standardized guidelines are required based primarily on clinical observations. Standardized diagnostic algorithms are available for the more common forms of EPTB [2] but not for ITB.

Epidemiology

Poverty, malnutrition, overcrowding and HIV co-infection aid the spread of TB. In HIV co-infected patients, there is more EPTB and more rapid progression, due to a deficient host cellular immune response. The incidence and severity of ATB is increased in HIV-positive patients, by reactivation of latent TB and new infections [5*,6].

The profile of patients with ATB differs around the globe. In Pakistan, ATB is the most common extrapulmonary site, and is increasing [7*]. Studies from Pakistan [7*,8,9*] West Africa [10,11] and Turkey [12*] found ATB to be a disease of young adults, especially women. A Zambian study [13**] of 31 HIV-positive patients with clinical signs of ATB found 22 (71%) cases with an age-range of 18-46 years and a predominance of women.
However, studies from China [14], Singapore [15*], India [16] and the UK [17*] found a lower incidence but equal or greater numbers of male patients. The UK is a low incidence country, but the proportion of EPTB is rising and varies according to place of birth: 29% of UK-born cases had EPTB but 51% of non-UK born cases [18]. Ramesh et al [17*] found that 91% of UK patients with ATB were of South Asian origin. In addition to the effect of age, sex and immune status, the host-pathogen interaction may differ between ethnic groups due to host susceptibility/resistance factors [19**].

Pathogenesis

The principal cause of ITB is *Mycobacterium tuberculosis*. ITB may be a primary infection, or secondary following reactivation, usually from a primary pulmonary focus. Assumed routes of infection of the gastrointestinal tract are ingestion, for example, of bacilli in sputum from an active focus in the lung, haematogenous spread from the lung, from infected lymph nodes and direct spread from adjacent organs. Unpasteurized milk and milk products are regarded as the main route of transmission of zoonotic TB caused by *Mycobacterium bovis* in countries where there are no effective eradication programmes. However, in the UK, *M. bovis* accounts only for 0.5-1.5% of all culture-confirmed TB cases [20]. A rare case of ITB in a 90-day infant was due to postnatal transmission from the mother [21].

The genotype of *M. tuberculosis* has important clinical consequences, as it influences the presenting features of pulmonary and EPTB. The East Asian/Beijing lineage, predominantly found in Asia, is associated with greater dissemination and a higher incidence of drug-resistance. It alters disease presentation by influencing the intracerebral inflammatory response, resulting in more meningeal disease [22**]. The outcome of exposure to *M.*
tuberculosis depends on both human and bacterial genotypes. For example, a single nucleotide polymorphism, T597C in the Toll-like receptor-2 (TLR2) gene, is more commonly found in patients infected with East-Asian/Beijing strains of MTB [23**]. It is highly likely that more examples of such interactions will come to light.

M-cells, found in the follicle-associated epithelium of intestinal Peyer’s patches of gut-associated lymphoid tissue, provide a route of entry for pathogens into the mucosa and can phagocytose tubercle bacilli. Therefore, the higher number of lymphoid Peyer’s patches in young adults may be one reason why ITB is often associated with this age group.

Pathology

The ileocaecal region is the most common site of involvement, although ATB can have a focus at any site in the gastrointestinal tract, associated lymph nodes and/or the peritoneum. ITB usually has one of three forms: ulcerative, hypertrophic or ulcerohypertrophic or fibrous [24]. Tuberculous granulomas initially form in the mucosa or Peyer’s patches, whilst ulcers are relatively superficial, with a different appearance from those in Crohn’s disease. ITB progresses slowly and presents late with complications, especially acute or sub-acute obstruction due to mass (tuberculoma), stricture formation in the ileocaecal region or perforation leading to peritonitis. Peritoneal TB (PTB) is rare in the absence of any other debilitating disease. In PTB the peritoneum is studded with multiple yellow-white tubercles.

Site of involvement and clinical presentation

ATB is difficult to diagnose because of its lack of specific symptoms and variable manifestations depending upon anatomical localization of the disease. About 40% of cases originate from the gastrointestinal tract. The major diagnostic dilemma of ITB is to differentiate it from Crohn’s disease [25*], although ITB mimics other conditions and may present as an acute abdomen, carcinoma, malabsorption or perforation. ITB patients often
have fever, night sweats and weight loss, altered bowel habits, and abdominal pain. If the abdominal cavity is involved there may be ascites. In some patient groups cirrhosis of the liver is associated with PTB [26*].

In ITB, all regions from the oesophagus to the rectum may be involved. Oesophageal TB is very uncommon and mimics oesophageal carcinoma. Gastroduodenal TB may mimic peptic ulcer disease or present with symptoms of pyloric obstruction, thus being confused with adenocarcinoma. Ileocelecal TB presents with abdominal pain, a right iliac fossa mass and/or altered bowel habits and bleeding, which mimics Crohn’s disease, carcinoma, amoebiasis, enteric fever or Yersinia enterocolitica. Colonic TB occurs in about 10% of cases, mimicking carcinoma or, more rarely, ulcerative colitis. In rectal TB the predominant symptom is bleeding, and in anal TB, fistulae are common, both mimicking carcinoma or Crohn’s disease. The main presenting symptoms are shown in Table 1 although the frequency differs slightly in different studies [3**,8,9*,12*,25*,27, 28,29*]. The diagnostic criteria for HIV-positive patients differ from those who are HIV-negative. The common features of HIV-positive patients with abdominal TB from Zambia were ascites, enlarged para-aortic nodes, hepatosplenomegaly and a mesenteric mass, none of which were identified in HIV-positive TB-negative controls [13**].

In children the presenting features of PTB are similar with abdominal pain, fevers and ascites [30*,31]. Malnutrition is a common feature of ATB in children.

Table 1

Principal clinical presentations in abdominal tuberculosis and Crohn’s Disease
<table>
<thead>
<tr>
<th>Oesophageal</th>
<th>Intestinal</th>
<th>Peritoneal</th>
<th>Crohn’s Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysphagia</td>
<td>Abdominal pain</td>
<td>Abdominal pain</td>
<td>Diarrhoea</td>
</tr>
<tr>
<td>Fever</td>
<td>Fever</td>
<td>Ascites</td>
<td>Abdominal pain</td>
</tr>
<tr>
<td>Night sweats</td>
<td>Night sweats</td>
<td>Fever</td>
<td>Weight loss</td>
</tr>
<tr>
<td>Weight loss</td>
<td>Weight loss</td>
<td>Weight loss</td>
<td>Bleeding</td>
</tr>
<tr>
<td></td>
<td>Diarrhoea</td>
<td></td>
<td>Fistula</td>
</tr>
<tr>
<td></td>
<td>Mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bleeding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data from [3**,8,9*,12*,25*,27,28,29*]

Diagnosis

The criteria for diagnosing ATB are histological evidence of caseating granuloma with acid-fast bacilli stained by Ziehl-Neelsen and culture/PCR positivity. When patients present with acute abdominal obstruction, diagnosis is normally made during surgery, or by examination of the removed tissue. The main diagnostic utilities are imaging, biopsy for histology and culture. Clinical chemistry, immunology and nucleic acid amplification techniques are not used routinely but have potential.

Imaging

An abdominal radiograph yields no specific information identifying ATB but may reveal obstruction or perforation and calcified mesenteric lymph nodes. Barium studies are particularly useful in demonstrating mucosal lesions. The main imaging techniques are ultrasonography, computerized axial tomography (CT), positron emission tomography (PET).
and magnetic resonance imaging (MRI). The common imaging features that may be seen in ATB are as follows:

(1) enlarged para-aortic nodes,

(2) asymmetric bowel wall thickening,

(3) ascites,

(4) inflammatory mass of bowel wall lymph nodes and omentum,

(5) narrowing of the terminal ileum with thickening and gaping of the iliocaecal valve,

(6) ‘white bowel’ sign due to lymphatic infiltration and

(7) ‘sliced bread sign’ due to fluid surrounding bowel caused by inflammation of the bowel wall.

Ultrasonography is a non-invasive technique, especially useful for detecting fluid and imaging ascites in PTB. The asymmetric thickening of the bowel wall is typical of ITB [32**]. CT shows the major features of ITB, and contrast-enhanced CT can visualize non-calcified, low-density lesions [33]. Some authors believe CT to be the imaging method of choice for ATB, but on balance, MRI is preferable to CT because of the lack of radiation, particularly for chronic conditions where repeated images may be necessary and in children. MRI scans give a variable appearance of lymphadenopathy depending on the weighting and the stage of the granuloma. Typically, there is a hyperdense centre and hypodense rim in caseating granuloma (T2-weighted). Abnormal bowel wall shows a decreased intensity on T1-weighting and an increased density on T2-weighting. These MRI findings are not specific to TB but can also occur in Crohn’s disease, malignancy or other infections. Distension of the bowel with iso-osmotic saline enables better visualization of gastrointestinal transmural
abnormalities by CT or MRI, and this is being used increasingly to identify lesions in
Crohn’s disease or TB [34,35*].

F18-fluorodeoxyglucose (FDG) accumulates in gastrointestinal and peritoneal TB
making F18-FDG PET a useful imaging technique. Although non-specific, it is used for the
detection of EPTB and monitoring of treatment [36] in studies of ascites of undetermined
origin [37,38*]. Radiopharmaceuticals with greater specificity may enable F18-FDG PET to
become a more valuable diagnostic technique for ITB.

Sampling techniques

Diagnosis of ATB is limited by the invasiveness and expense of the procedures needed to
obtain appropriate samples for histology or culture, or both. Inflammatory bowel disease and
amoebic colitis can mimic TB on endoscopy and biopsy, so diagnosis is difficult [39].
Laparoscopy, laparotomy, colonoscopy, percutaneous biopsy, or all may be required, and
although ascitic fluid is more accessible, its culture has low sensitivity [13**]. Early
laparoscopy coupled with histology of frozen biopsy sections is particularly useful in
diagnosing ATB in patients with no evidence of extra-abdominal disease [40*]. Laparoscopy
is also useful in the management of acute pain in children, enabling recognition of
presumptive ATB for confirmatory tests [41*]. Similarly, laparoscopy can establish the
diagnosis in atypical PTB [42]. Terminal ileoscopy is useful in colonoscopy patients
suspected of having ileocolonic TB [43]. Colonoscopy greatly improves the diagnosis of
ileocaecal ulcer [44]. The ITB/Crohn’s disease differential diagnosis [25*] is assisted by
colonoscopic evaluation of the effect of short-term anti-TB treatment to monitor any
improvement [45].

Fine needle aspirates (FNAs) are less invasive, so are more feasible in resource-poor settings.
FNAs, combined with a Ziehl–Neelsen stain and PCR, ensured a speedy and reliable diagnosis in HIV-positive children in South Africa [46]. In this study, TB was the second commonest diagnosis in children who presented with mass lesions. Similarly, an Indian study [47] found that from 1999-2006, 92 cases of ATB were diagnosed by FNA cytology, and it was a simple, fast, accurate and inexpensive diagnostic procedure.

Laboratory investigations

Microscopy is the most rapid diagnostic tool. In ideal settings it can produce same day results, but it is very insensitive, yielding only 10-30% of culture-positive samples, especially in severely immunocompromised individuals [13**]. Culture is sensitive, but may take four weeks to obtain conclusive results even with enhanced culture systems. Therefore, other potential diagnostic markers are needed.

Microscopy can be improved significantly by using immunohistochemistry to visualize tubercle bacilli. In a study of 33 histologically diagnosed cases of ATB [48], immunostaining of the *M. tuberculosis*-specific antigen MPT64 in archival formalin-fixed tissues was positive in 25 (75.7%), whereas two non-TB controls were positive (11.1%). None of the ATB biopsies were positive by Ziehl-Neelsen stain. Immunohistochemistry based on the *M. tuberculosis* 38-kDa antigen in FNAs from TB lymphadenitis [49] found more than 96% of cases positive compared with 36-44% that were positive by Ziehl-Neelsen stain.

In cases of PTB, a meta-analysis [50] of 12 prospective studies concluded that adenosine deaminase (ADA) levels in ascitic fluid provide a fast and discriminating test. When ADA is compared with ascitic fluid interferon-gamma (IFN-γ), both have similar accuracy, but
ADA is more accessible in resource-poor settings. ADA levels are proportional to the degree of T-cell activation, so are increased in PTB due to the stimulation of cells by mycobacterial antigens. Other markers used for malignancy diagnosis, such as serum cancer antigen 125 (CA-125), may be raised in PTB, so this possibility should be considered, especially in patients from TB-endemic countries [51]. In female patients with ascites, abdominal pain and elevated CA-125 levels, PTB mimics malignancies such as ovarian cancer.

Serological tests for EPTB are inconsistent and perform no better than microscopy. However, IFN-γ assays provide a sensitive and specific test for TB pleuritis [52*]. Very few studies have examined material from ITB patients. An IFN-γ release assay, QuantiFeron-TB Gold (Cellestis Inc, Carnegie, Victoria, Australia), was used in two IBD cases [53] and showed promise. A modified antigen-specific IFN-γ-based assay for cavity fluid specimens performed better than assays for cavity fluid ADA or whole blood IFN-γ assays [54].

Amplification methods for the direct detection of *M. tuberculosis* DNA in clinical samples have been developed but for pulmonary TB. Most are based on a specific region of the insertion element IS6110, which is normally present at 8–10 copies/cell of *M. tuberculosis*. However, it is entirely absent in some strains and is only present as a single copy in *M. bovis*. No commercial kit has been validated for ATB, although the BDProbeTec ET Direct Detection assay (Becton Dickinson, Sparks, Maryland, USA) found *M. tuberculosis* in 24 of 35 (68.5%) formalin-fixed, paraffin-embedded tissue specimens from sites with necrotizing granulomatous inflammation, including the gastrointestinal tract and peritoneum [55]. In-house PCRs have been described but are not readily transferred to other centres and will
require rigorous assessment and validation [52*]. PCR can differentiate ITB from Crohn’s disease, and in-situ PCR can directly visualise *M. tuberculosis* DNA in tissue sections, but with low sensitivity [56]. PCR detected *M. tuberculosis* DNA in 84 (85%) of dried aspirate smears from tuberculous lymphadenitis patients [57**], compared with 15 (15.3%) positive by Ziehl-Neelsen stain and 24 (24.4%) by culture. The combination of broth culture and PCR gives culture results after only 8-15 days instead of 26-30 days, which enables presumptive antituberculous treatment to be maintained or discontinued [58].

A PCR method based on IS1081 [59] has more potential as there are 6 copies/cell of IS1081 in all members of the *M. tuberculosis* complex. PCR inhibition, a common problem when clinical samples are used directly, must be controlled, and PCRs should be optimized to maximum efficiency of reaction. This is best carried out using newer methodologies, including real-time PCR, which may not be economically feasible in resource-poor countries.

Management and treatment

Surgical management is conservative, with perforation being managed by resection and end-to-end anastomosis and obstruction managed by strictureplasty, or in severe cases by resection. Obstruction and fistulae may respond to purely medical management. Because of the difficult diagnostic challenge of ATB, a high index of suspicion is needed, particularly in nonendemic areas, as medical treatment can be curative and save unnecessary surgery [60*].

Standard treatment for ITB is conventional chemotherapy (Rifampicin+Isoniazid+Pyrazinamide+Ethambutol, RIPE) for 2 months, with Rifampicin+Isoniazid (RI) continuing for a further 4-7 months. Most countries adopt the WHO guidelines of directly observed treatment short course (DOTS) given on a daily or
thrice weekly basis. A study [61] comparing daily RIPE for 2 months followed by RI for 7 months, with DOTS receiving RIPE thrice weekly for 2 months followed by RI thrice weekly for 4 months, showed comparable cure rates.

The role of corticosteroids in ITB is not clear, and further studies are required. Management of patients who are co-infected with TB and HIV presents problems related to compliance, drug interactions and immune reconstitution inflammatory syndrome [62]. Avoidance of drug interactions can be improved if rifampicin is replaced by rifabutin [62], or nucleos(t)ide-only anti-HIV regimens are used [63*]. Current preliminary UK recommendations for treatment of co-infection are: if the CD4 cell count is less than 100 x 10^6/µl to commence highly active antiretroviral treatment (HAART) immediately, if the CD4 cell count is 100-200 x 10^6 cells/µl, one can defer HAART until completion of the initial 2-month phase of anti-TB treatment; and if the CD4 cell count is above 200 x 10^6 cells/µl, the complete course of anti-TB treatment can be finished before starting HAART [64].

Patients who receive antitumour necrosis factor (anti-TNF) therapy for Crohn’s disease are susceptible to TB reactivation or acquisition [65,66]. To reduce latent TB reactivation patients should receive RI for 3 months prior to commencement of anti-TNF therapy, or if they develop TB during treatment, be given standard anti-tuberculous therapy.

Future developments will be in novel drug delivery systems such as the slow release of antituberculous drugs from polyDL-lactide-coglycolide (PGL) and gelatin, although their effects on clinical cure rates are not yet reported [67]. Other developments for the treatment of ITB could involve the use of targeted gold nanoparticles to block uptake of iron to the
microbe or targeted gold/iron nanoparticles combined with radiofrequency-induced heating, which could kill the microbe. Both techniques are independent of microbial antibiotic sensitivity and would be active against multi-drug resistant TB.

Conclusions

ITB has been somewhat neglected by researchers, although it is increasing due to HIV coinfection. It is a particular problem in some localities, possibly due to the genetic characteristics of host and pathogen, plus socioeconomic factors. In resource-poor countries diagnosis will continue to be mainly by clinical presentation, so a high index of suspicion is required. Several sophisticated imaging and detection techniques are available, but molecular methods require validation for ITB. Innovative work is in progress formulating oral drug delivery systems.

References

Papers of particular interest, published within the period of review, have been highlighted as:

* of special interest

** of outstanding interest

3 **Das K, Ghoshat UC, Dhali GK et al. Crohn’s Disease in India: a multicenter study from a

This retrospective study describes the demographic and clinical parameters of 186 patients reported from 2000-2007 with Crohn’s disease from three regions in north and northeast India. It then considers the differentiation of Crohn’s disease from ITB.

A useful profile of 1320 HIV-positive patients recorded over 1 year, with demographic and clinical details of 138 coinfected with TB (50 with ATB).

A study from a country where ATB is the most common presentation of EPTB.

A demographic and clinical profile of ATB patients with an evaluation of presentation, diagnosis and outcome of different surgical procedures.

10 Ohene-Yeboah M. Case series of acute presentation of abdominal TB in Ghana. Tropical

A study of PTB from Eastern Turkey, which evaluates clinical presentation, physical examination, laboratory and diagnostic methods.

Sinkala E, Gray S, Zulu I et al. Clinical and ultrasonographic features of abdominal tuberculosis in HIV positive adults in Zambia. BMC Infect Dis 2009; 9:44 A detailed examination of the commonest presenting features in ATB patients coinfected with HIV. Ultrasonography was particularly useful in this resource-poor setting. The authors emphasise the need for a high index of clinical suspicion of ATB so that treatment can be started early due to the high mortality in this patient group. A diagnostic algorithm was devised and proved useful.

An interesting study of the demographic and clinical profile in an ATB patient group, which differs from that found in south Asia and Turkey.

http://www.lumhs.edu.pk/jlumhs/Vol04No03/pdfs/v4n3oa06.pdf
The profile of ATB in a country of low endemicity but with significant immigrant groups.

An examination of gene expression profiles and polymorphisms in these genes to see whether there is any relationship with susceptibility to TB. Polymorphisms in chemokine (C-C motif) ligand 1 (CCL1) were associated with TB in a case-control association study.

Large sequence polymorphisms were used to genotype MTB isolates from HIV-negative Vietnamese adults. The clinical presentation, response to treatment and outcome was examined and found to be associated with M. tuberculosis genotype in pulmonary and meningeal TB. Drug resistance was also associated with M. tuberculosis genotype.

Both host and *M. tuberculosis* genetic polymorphisms were examined in relation to TB and its clinical presentation. The authors conclude that *M. tuberculosis* genotype influences clinical disease phenotype and that there is a significant interaction between host and MTB genotypes and the development of active disease.

A recent study of clinical presentation and diagnosis, with a diagnostic algorithm devised by the authors.

A detailed profile of the clinical presentation and laboratory investigations in children.

An excellent study delineating the sonographic findings in ITB, pulmonary TB and in patients with both, compared with controls.

33 Li Y, Yang Z-G, Guo Y-K et al. Distribution and characteristics of hematogenous disseminated tuberculosis within the abdomen on contrast-enhanced CT. Abdom Imaging 2007; 32:484-488.

An excellent and detailed study advocating the usefulness of MRI scanning of the bowel in Crohn’s disease but not including ITB.

36 Hofmeyr A, Lau WFE, Slavin MA. Mycobacterium tuberculosis infection in patients with cancer, the role of 18-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring treatment response. Tuberculosis (Edinb) 2007; 87:459-463.

A comparison of the role of 18F-FDG PET/CT with CT alone, or serum markers of malignancy, for differential diagnostic abilities.

The retrospective 6-year study shows the value of early laparoscopy and frozen tissue biopsy in reaching a diagnosis and enabling rapid treatment.

In a population where TB is endemic, laparoscopy is a valuable tool in enabling rapid diagnosis in children with an acute abdomen.

48 Purohit MR, Mustafa T, Wiker HG et al. Immunohistochemical diagnosis of abdominal and lymph node tuberculosis by detecting Mycobacterium tuberculosis complex specific antigen MPT64. Diagnostic Pathology 2007; 2:36

An evaluation of TB diagnostic methods prior to WHO formulation of policies and guidelines.

This is based on dried smears from cervical lymph node aspirates but the optimized method should be applicable to FNAs from ATB. Such samples could readily be sent to a central reference laboratory for analysis.

An object lesson in not undertaking radical surgery before excluding ITB

* indicates that the reference was not available.

The first large study recording the validity of using nucleos(t)ide only HAART regimens.

64 http://www.bhiva.org/cms1223707.asp

Discussion document from the British HIV Association (BHIVA) for treatment of co-infection of HIV and TB

