UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Acceptor Levels in p-Type Cu2O: Rationalizing Theory and Experiment

Scanlon, DO; Morgan, BJ; Watson, GW; Walsh, A; (2009) Acceptor Levels in p-Type Cu2O: Rationalizing Theory and Experiment. PHYS REV LETT , 103 (9) , Article 096405. 10.1103/PhysRevLett.103.096405.

Full text not available from this repository.

Abstract

Understanding conduction in Cu2O is vital to the optimization of Cu-based p-type transparent conducting oxides. Using a screened hybrid-density-functional approach we have investigated the formation of p-type defects in Cu2O giving rise to single-particle levels that are deep in the band gap, consistent with experimentally observed activated, polaronic conduction. Our calculated transition levels for simple and split copper vacancies explain the source of the two distinct hole states seen in DLTS experiments. The necessity of techniques that go beyond the present generalized-gradient- and local-density-approximation techniques for accurately describing p-type defects in Cu(I)-based oxides is discussed.

Type:Article
Title:Acceptor Levels in p-Type Cu2O: Rationalizing Theory and Experiment
DOI:10.1103/PhysRevLett.103.096405
Keywords:CUPROUS-OXIDE, ELECTRICAL-CONDUCTIVITY, DOPED CU2O, THIN-FILMS, DEFECT MECHANISMS, OXYGEN VACANCIES, SINGLE-CRYSTAL, COPPER OXIDES, AB-INITIO, TRANSPORT
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Chemistry

Archive Staff Only: edit this record