UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Application of soft tissue modelling to image-guided surgery

Carter, TJ; Sermesant, M; Cash, DM; Barratt, DC; Tanner, C; Hawkes, DJ; (2005) Application of soft tissue modelling to image-guided surgery. MED ENG PHYS , 27 (10) 893 - 909. 10.1016/j.medengphy.2005.10.005.

Full text not available from this repository.

Abstract

The deformation of soft tissue compromises the accuracy of image-guided surgery based on preoperative images, and restricts its applicability to surgery on or near bony structures. One way to overcome these limitations is to combine biomechanical models with sparse intraoperative data, in order to realistically warp the preoperative image to match the surgical situation. We detail the process of biomechanical modelling in the context of image-guided surgery. We focus in particular on the finite element method, which is shown to be a promising approach, and review the constitutive relationships which have been suggested for representing tissue during surgery. Appropriate intraoperative measurements are required to constrain the deformation, and we discuss the potential of the modalities which have been applied to this task. This technology is on the verge of transition into clinical practice, where it promises to increase the guidance accuracy and facilitate less invasive interventions. We describe here how soft tissue modelling techniques have been applied to image-guided surgery applications. (c) 2005 IPEM. Published by Elsevier Ltd. All rights reserved.

Type:Article
Title:Application of soft tissue modelling to image-guided surgery
DOI:10.1016/j.medengphy.2005.10.005
Keywords:finite element method, image-guided surgery, soft tissue deformation, PREDICTING MECHANICAL DEFORMATIONS, IN-VIVO QUANTIFICATION, FINITE-ELEMENT-METHOD, HUMAN BRAIN-TISSUE, LIVER-TISSUE, BIOMECHANICAL PROPERTIES, EXTERNAL PERTURBATIONS, SHEAR PROPERTIES, TRACKING SYSTEM, HUMAN HEAD
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Brain Sciences > Institute of Neurology > Neurodegenerative Diseases
UCL > School of BEAMS > Faculty of Engineering Science > Medical Physics and Bioengineering

Archive Staff Only: edit this record