UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Using covariance intersection for SLAM

Julier, SJ; Uhlmann, JK; (2007) Using covariance intersection for SLAM. Robotics and Autonomous Systems , 55 (1) pp. 3-20. 10.1016/j.robot.2006.06.011.

Full text not available from this repository.


One of the greatest obstacles to the use of Simultaneous Localization And Mapping (SLAM) in a real-world environment is the need to maintain the full correlation structure between the vehicle and all of the landmark estimates. This structure is computationally expensive to maintain and is not robust to linearization errors. In this tutorial we describe SLAM algorithms that attempt to circumvent these difficulties through the use of Covariance Intersection (CI). CI is the optimal algorithm for fusing estimates when the correlations among them are unknown. A feature of CI relative to techniques which exploit full correlation information is that it provides provable consistency with much less computational overhead. In practice, however, a tradeoff typically needs to be made between estimation accuracy and computational cost. We describe a number of techniques that span the range of tradeoffs from maximum computational efficiency with straight CI to maximum estimation efficiency with the maintenance of all correlation information. We present a set of examples illustrating benefits of CI-based SLAM. © 2006.

Type: Article
Title: Using covariance intersection for SLAM
DOI: 10.1016/j.robot.2006.06.011
URI: http://discovery.ucl.ac.uk/id/eprint/16788
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item