UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation

Jell, G; Verdejo, R; Safinia, L; Shaffer, MSP; Stevens, MM; Bismarck, A; (2008) Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation. J MATER CHEM , 18 (16) 1865 - 1872. 10.1039/b716109c.

Full text not available from this repository.

Abstract

Nanocomposite foams are an attractive prospect in a number of fields including biomedical science, catalysis and filtration. In biomedical engineering, porous nanocomposite scaffolds can potentially mimic aspects of the nanoscale architecture of the extra-cellular matrix, as well as enhance the mechanical properties required for successful weight-bearing implants. Thermoplastic polyurethane - multi-walled carbon nanotubes (CNTs) foams were manufactured by thermally induced phase separation ( TIPS). TIPS proved to be a successful manufacturing route to three-dimensional, highly porous polymers containing well-dispersed CNTs. Some CNTs are trapped perpendicular to the pore surface creating a rough, nanotextured surface. The surface character of the nanocomposites became more acidic with increasing loading fraction of oxidised CNTs. However, due to the heterogeneity of the nanocomposite surface, its wetting behaviour was not affected. CNT incorporation significantly improved the compression strength and stiffness of the nanocomposite scaffold. The biological properties of these scaffolds were studied in vitro and revealed that increasing MWNT loading fraction did not cause osteoblast cytotoxicity or detrimental effects on osteoblast differentiation or mineralisation. However, osteoblast production of the potent angiogenic factor VEGF ( vascular endothelial growth factor) increased in proportion to CNT loading ( after 3 days in culture), revealing the potential of the nanocomposite scaffolds to influence cellular behaviour.

Type:Article
Title:Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation
DOI:10.1039/b716109c
Keywords:COMPOSITE SCAFFOLDS, IN-VITRO, SURFACE MODIFICATION, FOAMS, BIOCOMPATIBILITY, CYTOTOXICITY, CONSTRUCTS, CELLS, DIFFERENTIATION, HISTIOCYTOSIS
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Medical Sciences > Surgery and Interventional Science (Division of) > Research Department of General Surgery

Archive Staff Only: edit this record