UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Renormalizability of Effective Scalar Field Theory

Ball, RD; Thorne, RS; (1994) Renormalizability of Effective Scalar Field Theory. Annals of Physics , 236 (1) pp. 117-204. 10.1006/aphy.1994.1109.

Full text not available from this repository.

Abstract

We present a comprehensive discussion of the consistency of the effective quantum field theory of a single Z2 symmetric scalar field. The theory is constructed from a bare Euclidean action which at a scale much greater than the particle′s mass is constrained only by the most basic requirements; stability, finiteness, analyticity, naturalness, and global symmetry. We prove to all orders in perturbation theory the boundedness, convergence, and universality of the theory at low energy scales, and thus that the theory is perturbatively renormalizable in the sense that to a certain precision over a range of such scales it depends only on a finite number of parameters. We then demonstrate that the effective theory has a well-defined unitary and causal analytic S-matrix at all energy scales. We also show that redundant terms in the Lagrangian may be systematically eliminated by field redefinitions without changing the S-matrix, and discuss the extent to which effective field theory and analytic S-matrix theory are actually equivalent. All this is achieved by a systematic exploitation of Wilson′s exact renormalization group flow equation, as used by Polchinski in his original proof of the renimalizability of conventional φ4-theory. © 1994 Academic Press. All rights reserved.

Type: Article
Title: Renormalizability of Effective Scalar Field Theory
DOI: 10.1006/aphy.1994.1109
UCL classification: UCL > School of BEAMS
UCL > School of BEAMS > Faculty of Maths and Physical Sciences
URI: http://discovery.ucl.ac.uk/id/eprint/165779
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item