UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

On the noise model of Support Vector Machines Regression

Pontil, M; Mukherjee, S; Girosi, F; (2000) On the noise model of Support Vector Machines Regression. In: Arimura, H and Jain, S and Sharma, A, (eds.) ALGORITHMIC LEARNING THEORY, PROCEEDINGS. (pp. 316 - 324). SPRINGER-VERLAG BERLIN

Full text not available from this repository.

Abstract

Support Vector Machines Regression (SVMR) is a learning technique where the goodness of fit is measured not by the usual quadratic loss function (the mean square error), but by a different loss function called the e-Insensitive Loss Function (ILF), which is similar to loss functions used in the field of robust statistics. The quadratic loss function is well justified under the assumption of Gaussian additive noise. However, the noise model underlying the choice of the ILF is not clear. In this paper the use of the ILF is justified under the assumption that the noise is additive and Gaussian, where the variance and mean of the Gaussian are random variables. The probability distributions for the variance and mean will be stated explicitly. While this work is presented in the framework of SVMR, it can be extended to justify non-quadratic loss functions in any Maximum Likelihood or Maximum A Posteriori approach. It applies not only to the ILF, but to a much broader class of loss functions.

Type:Proceedings paper
Title:On the noise model of Support Vector Machines Regression
Event:11th International Conference on Algorithmic Learning Theory (ALT 2000)
Location:SYDNEY, AUSTRALIA
Dates:2000-12-11 - 2000-12-13
ISBN:3-540-41237-9
Keywords:APPROXIMATION, NETWORKS
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record